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Abstract 

As the Semantic Web gains importance for sharing 
knowledge on the Internet this has lead to the 
development and publishing of many ontologies in 
different domains. When trying to reuse existing 
ontologies into their applications, users are faced with the 
problem of determining if an ontology is suitable for their 
needs. In this paper, we introduce OntoQA, an approach 
that analyzes ontology schemas and their populations (i.e. 
knowledgebases) and describes them through a well 
defined set of metrics. These metrics can highlight key 
characteristics of an ontology schema as well as its 
population and enable users to make an informed 
decision quickly. We present an evaluation of several 
ontologies using these metrics to demonstrate their 
applicability. 
 
 
1. Introduction 
 

The Semantic Web envisions making web content 
machine processable, not just readable or consumable by 
human beings [3]. This is accomplished by the use of 
ontologies which involve agreed terms and their 
relationships in different domains (e.g., the gene ontology 
(GO) and other ontologies at Open Biology Ontologies1 in 
biology as well as general-purpose ontologies such as 
SWETO – Semantic Web Technology Evaluation 
Ontology [1], and TAP[6]). Different users can agree on 
the use of a common ontology in RDF(S) (Resource 
Description Framework) [15, 16] or OWL (Web Ontology 
Language) [12] in order to annotate their content or 
resolve their differences through interactions and 
negotiations (i.e. emergent semantics). 

An ontology describes a hierarchy of concepts 
usually related by subsumption relationships. In more 
sophisticated cases, suitable axioms are added in order to 
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express other relationships between concepts and to 
constrain their intended interpretation [5]. After an 
ontology is constructed, it is usually populated by 
instances either manually, semi-automatically or mostly-
automatically.  For example, the IMPs architecture [22] 
and SCORE [21] facilitate the retrieval, crawling, 
extraction disambiguation, restructuring, integration and 
formalization of task-relevant ontological knowledge 
from the semi-structured and structured sources on web. 

Assessing the quality of an ontology is important for 
several reasons including allowing the ontology developer 
to automatically recognize areas that might need more 
work, allowing the ontology user to know what parts of 
the ontology might cause problems, and allow him/her to 
compare between different ontologies when only one is 
going to be used. 

In our view, the quality of ontologies can be assessed 
in different dimensions. For example, quality metrics can 
be used to evaluate the success of a schema in modeling a 
real-world domain such as computer science researchers 
and their publications (Quality 1 in Figure 1). The depth, 
breadth, and height balance of the schema inheritance tree 
can play a role in a quality assessment. Additionally, the 
quality of a populated ontology (i.e., KB) can be 
measured to check whether it is a rich and accurate 
representative of real world entities and relations (Quality 
2 in Figure 1). Finally, the quality of KB can be measured 
to see if the instances and relations agree with the schema 
(Quality 3 in Figure 1). 

We propose a method to evaluate the quality of an 
ontology on the different dimensions mentioned above. 
This method can be used by ontology users before 
considering an ontology as a source of information or by 
ontology developers to evaluate their work in building the 
ontology. 



 
Fig. 1. Different dimensions to evaluate ontology 

quality 
 
Our contributions in this paper are the following: 
• Categorizing the quality of ontologies into three 

groups: schema, knowledgebase (KB) and class 
metrics. These metrics serve as a means to evaluate the 
quality of a single ontology or to compare ontologies 
when more than one candidate fits certain 
requirements. 

• Providing metrics to quantitatively assess the quality in 
each group. 

• A tool for quality analysis and providing experimental 
results. 

The rest of the paper is organized as follows: Section 
2 provides the motivation to our work. Section 3 details 
the model we base our work on. Section 4 presents the 
metrics of our model. Section 5 discusses the 
implementation and presents experimental results. 
Finally, Section 6 discusses previous related work and 
compares that work to our approach. 
 
2. Motivation 
 

The motivation for our work began during our work 
on the SWETO ontology [1]. SWETO is intended to be a 
broad and general purpose ontology covering multiple 
domains and populated with real data from heterogeneous 
sources. One purpose of not limiting SWETO to a single 
domain enabled us to harvest facts from open-source, 
non-copyrighted Web sources to populate it with 
approximate one million facts.  We wanted it to serve as a 
test-bed for advanced semantic applications such as 
discovery of semantic associations and semantic entity 
disambiguation in our own research, as well as to make it 
available to the research community for scalability and 
performance testing of techniques at the RDF/S level.  
Semantic associations [2] are the paths (entities and 
relationships) that connect two different entities. The 
nature of SWETO requires the careful design of the 
schema and the extraction of data from a large number of 
distinct resources to cover the different schema classes in 
such a way that represents the real world. 

SWETO includes some geographical data represented 
by classes of cities, states, and countries. It also contains 
information about logistic and financial aspects of 
terrorism. The publications domain is included in 
SWETO by adding classes representing Researchers, 
Scientific Publications, Journals, Conferences and Books. 
SWETO also includes information about business 
organizations such as Companies and Banks. 

The extraction process was done mostly-
automatically on several phases and resulted in hundreds 
of thousands of instances in the KB. Some of the sources 
used were the CIA World Factbook2, which includes rich 
geographical information, and conference web sites. After 
each phase of the extraction process, there was a need to 
evaluate the quality of the extracted data and to decide on 
the targets for the next extraction phase. Some of the 
issues that needed additional attention included the 
abundance of instances on some parts of the schema while 
other parts have no instances, and that instances of some 
classes are focusing on using some of the relationships 
defined in the schema while ignoring the other 
relationships, as will be shown in the experimental results 
in Section 5. These problems can result in the lack of rich 
semantic associations in the SWETO KB; restricting 
relationships found between two persons to co-authorship 
in a certain publication, where a more interesting 
relationship that was not captured due to not being 
extracted that can establish business interests between 
these two persons. 

The discovery of these and similar problems is a 
difficult process because of the large number of classes in 
the schema and the large number of instances that belong 
to these classes. The set of metrics presented here can be 
used to describe an ontology’s schema and KB to provide 
the ontology designer with information they can use to 
further enhance such ontology. These metrics can be used 
not only during the development of ontologies but also by 
a user looking for an ontology to suit his/her needs to 
compare between different existing ontologies. 
 
3. Model 
 

OntoQA is used to describe different metrics of an 
ontology using the vocabulary defined in an RDF-S or 
OWL document and instances defined in an RDF file, 
requiring no further information in all metrics (with the 
exception of the metric that requires information about the 
expected number of instances for each class). The model 
considers how classes are organized in the schema and on 
how instances are distributed across the schema. 

The model that will be used in the definition of the 
metrics is based on [8]. It formally defines the schema 
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and KB structures. This model is going to be used in the 
definition of metrics in Section 5. 
Ontology structure (Schema). An ontology schema is a 
6-tuple O := {C, P, A, HC, prop, att}, consisting of two 
disjoint sets C and P whose elements are called concepts 
and relationships, respectively, a concept hierarchy HC : 
HC is a directed, transitive relation HC   C × C which is 
also called concept taxonomy. H

⊆
C(C1, C2) means that C1 is 

a sub-concept of C2, a function prop: P  C × C, that 
relates concepts non-taxonomically (The function dom: P 

 C with dom(P) := ∏1(rel(P) gives the domain of P, 
and range: P  C with range(P) := ∏2(rel(P)) gives its 
range. For prop(P) = (C1, C2) one may also write P(C1, 
C2)). A specific kind of relations are attributes A. The 
function att: A  C relates concepts with literal values 
(this means range(A) := STRING). 
Knowledgebase (metadata) structure. A metadata 
structure is a 6-tuple MD := {O, I, L, inst, instr, instl}, 
that consists of an ontology O, a set I whose elements are 
also called instance identifiers (correspondingly C, P and 
I are disjoint), a set of literal values L, a function inst: C 

 2I called concept instantiation (For inst(c) = I one 
may also write C(I)), and a function instr : P  2IxI called 
relation instantiation (for inst(P) = P{I1, I2} one may 
also write P(I1, I2)). The attribute instantiation is 
described via the function instl: P  2IxL relates instance s 
with literal values.  
 
4. The Metrics 
 

The metrics we are proposing are not 'gold standard' 
measures of ontologies. Instead, the metrics are intended 
to evaluate certain aspects of ontologies and their 
potential for knowledge representation. Rather than 
describing an ontology as merely effective or ineffective, 
metrics describe a certain aspect of the ontology because, 
in most cases, the way the ontology is built is largely 
dependent on the domain in which it is designed.  
Ontologies modeling human activities (e.g., travel or 
terrorism) will have distinctly different characteristics 
from those modeling the natural (or physical) world (e.g. 
genomes or complex carbohydrates. 

We divided the metrics into two related categories: 
schema metrics and instance metrics. The first category 
evaluates ontology design and its potential for rich 
knowledge representation. The second category evaluates 
the placement of instance data within the ontology and the 
effective usage of the ontology to represent the 
knowledge modeled in the ontology. 
 
4.1. Schema Metrics 
 

The schema metrics address the design of the 
ontology. Although we cannot know if the ontology 
design correctly models the knowledge, we can provide 

metrics that indicate the richness, width, depth, and 
inheritance of an ontology schema. 

Relationship Richness: This metric reflects the 
diversity of relations and placement of relations in the 
ontology. An ontology that contains many relations other 
than class-subclass relations is richer than a taxonomy 
with only class-subclass relationships. 

Formally, the relationship richness (RR) of a schema 
is defined as the ratio of the number of relationships (P) 
defined in the schema, divided by the sum of the number 
of subclasses (SC) (which is the same as the number of 
inheritance relationships) plus the number of 
relationships. 

PSC
P

RR
+

=  

The result of the formula will be a percentage 
representing how much of the connections between 
classes are rich relationships compared to all of the 
possible connections that can include rich relationships 
and inheritance relationships. For example, if an ontology 
has an RR close to zero, that would indicate that most of 
the relationships are class-subclass (i.e. ISA) 
relationships. In contrast, an ontology with a RR close to 
one would indicate that most of the relationships are other 
than class-subclass. 

Attribute Richness: The number of attributes (slots) 
that are defined for each class can indicate both the 
quality of ontology design and the amount of information 
pertaining to instance data. In general we assume that the 
more slots that are defined the more knowledge the 
ontology conveys. 

Formally, the attribute richness (AR) is defined as the 
average number of attributes (slots) per class. It is 
computed as the number attributes for all classes (att) 
divided by the number of classes (C). 

C
att

AR =  

The result will be a real number representing the 
average number of attributes per class, which gives 
insight into how much knowledge about classes is in the 
schema. An ontology with a high value for the AR 
indicates that each class has a high number of attributes 
on the average, while a lower value might indicate that 
less information is provided about each class. 

Inheritance Richness: This measure describes the 
distribution of information across different levels of the 
ontology’s inheritance tree or the fan-out of parent 
classes. This is a good indication of how well knowledge 
is grouped into different categories and subcategories in 
the ontology. This measure can distinguish a horizontal 
ontology from a vertical ontology or an ontology with 
different levels of specialization. A horizontal (or flat) 
ontology is an ontology that has a small number of 



inheritance levels, and each class has a relatively large 
number of subclasses. In contrast, a vertical ontology 
contains a large number of inheritance levels where 
classes have a small number of subclasses. This metric 
can be measured for the whole schema or for a subtree of 
the schema. 

Formally, the inheritance richness of the schema (IRs) 
is defined as the average number of subclasses per class. 
The number of subclasses (C1)for a class Ci is defined as 

( )i
C CCH ,1  

( )

C

CCH
CC

i
C

S
iIR
∑
∈

=

,1

 

The result of the formula will be a real number 
representing the average number of subclasses per class. 
An ontology with a low IRS would be of a vertical nature, 
which might reflect a very detailed type of knowledge 
that the ontology represents. while an ontology with a 
high IRS would be of a horizontal nature, which means 
that ontology represents a wide range of general 
knowledge. 
 
4.2. Instance Metrics 
 

The way data is placed within an ontology is also a 
very important measure of ontology quality. The 
placement of instance data and distribution of the data can 
indicate the effectiveness of the ontology design and the 
amount of knowledge represented by the ontology. 
Instance metrics are grouped into two categories: KB 
metrics, which describe the KB as a whole, and Class 
metrics, which describe the way each class that is defined 
in the schema is being utilized in the KB. 
 
4.2.1. Knowledgebase Metrics. 
 Class Richness: This metric is related to how instances 
are distributed across classes. The number of classes that 
have instances is compared with the total number of 
classes, giving a general idea of how many instances are 
related to classes defined in the schema. 

Formally, the class richness (CR) of a KB is defined 
as the ratio of the number of classes used in the base (C`) 
divided by the number of classes defined in the ontology 
schema (C). 

C
C

CR
`

=  

The result will be a percentage indicating how rich in 
classes the KB is. Thus, if the KB has a very low CR, then 
the KB does not have data that exemplifies all the 
knowledge in the schema. On the other hand, a KB that 
has a very high CR (close to 100%) would indicate that 

the data in the KB represents most of the knowledge in 
the schema. 
 Average Population (average distribution of instances 
across all classes): This measure is an indication of the 
number of instances compared to the number of classes. It 
can be useful if the ontology developer is not sure if 
enough instances were extracted compared to the number 
of classes. 

Formally, the average population (P) of classes in a 
KB is defined as the number of instances of the KB (I) 
divided by the number of classes defined in the ontology 
schema (C). 

C
I

P =  

The result will be a real number that shows how well 
is the data extraction process that was performed to 
populate the KB. For example, if the average number of 
instances per class is low, when read in conjunction with 
the previous metric, this number would indicate that the 
instances extracted into the KB might be insufficient to 
represent all of the knowledge in the schema. Keep in 
mind that some of the schema classes might have a very 
low number or a very high number by the nature of what 
it is representing.  

Cohesion: If instances and the relationships among 
them are considered as a graph where nodes represent 
instances and edges represent the relationships between 
them, this metric is the number of separate connected 
components in the instances. It can be used to indicate 
what areas need more instances in order to enable 
instances to be more closely connected. This metric can 
help if “islands” form in the KB as a result of extracting 
data from separate sources that do not have common 
knowledge. 

Formally, the cohesion (Coh) of a KB is defined as 
the number of separate connected components (SCC) of 
the graph representing the KB. 

SCCCoh =  

The result will be an integer representing the number 
of separate components. For example, a more useful 
throughput of semantic-association discovery algorithms 
might be expected from an ontology with a Coh of 1 (as 
this would indicate that all data in the KB is connected, 
and it will be possible to use a semantic association 
discovery algorithm without worrying about not 
considering a part of the KB). 
 
4.2.2. Class Metrics. 
 Importance: The percentage of instances that 
belong to classes at the subtree rooted at the current class 
with respect to the total number of instances. This metric 
can also be called instance distribution as it refers to the 
distribution of instances over classes. This metric is 



important in that it will help in identifying which areas of 
the schema are in focus when the instances are extracted 
and inform the user of the suitability of his/her intended 
use. It will also help direct the ontology developer or data 
extractor towards where s/he should focus on getting data 
if the intention is to get a consistent coverage of all 
classes in the schema. Although this measure might not be 
exact, it can be used to give a clear idea on what parts of 
the ontology are considered focal and what parts are on 
the edges. 

Formally, the importance (Imp) of a class Ci is 
defined as the number of instances that belong to the 
subtree rooted at Ci in the KB (Ci(I)) compared to the total 
number of instances in the KB (I). 

I
IC

Imp i )(
=  

The result of the formula will be a percentage 
representing the importance of the current class. 

Fullness: This metric details the KB average 
population metric mentioned above.  It would be mainly 
used by an ontology developer interested in knowing how 
well the data extraction was with respect to the expected 
number of instances of each class. This is helpful in 
directing the extraction process to any resources that will 
add instances belonging to classes that are not full. 

Formally, the fullness (F) of a class Ci is defined as 
the actual number of instances that belong to the subtree 
rooted at Ci (Ci(I)) compared to the expected number of 
instances that belong to the subtree rooted at Ci (Ci`(I)). 

)`(
)(

IC
IC

F
i

i=  

The result of the formula will be a percentage 
representing the actual coverage of instances compared to 
the expected coverage. In most cases, this measure is an 
indication of how well the instance extraction process 
performed. For example, a KB where most classes have a 
low F would require more data extraction. On the other 
hand, a KB where most classes are almost full would 
indicate that it reflects more closely the knowledge 
encoded in the schema. 

Inheritance Richness: This measure details the 
schema IRS metric mentioned above and describes the 
distribution of information in the current class subtree per 
class. This measure is a good indication of how well 
knowledge is grouped into different categories and 
subcategories under this class. 

Formally, the inheritance richness (IRc) of class Ci is 
defined as the average number of subclasses per class in 
the subtree. The number of subclasses for a class Ci is 

defined as ( )i
C CCH ,1  and the number of nodes in the 

subtree is |C’|. 

( )

'

,
'

1

C
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IR CC

i
C

C
i

∑
∈=  

The result of the formula will be a real number 
representing the average number of classes per schema 
level. The interpretation of the results of this metric 
depends highly on the nature of the ontology. Classes in 
an ontology that represents a very specific domain will 
have low IRC values, while classes in an ontology that 
represents a wide domain will usually have higher IRC 
values. 

Relationship Richness: This is an important metric 
reflecting how much of the properties in each class in the 
schema is actually being used at the instances level. It is a 
good indication of the how well the extraction process 
performed in the utilization of information defined at the 
schema level. 

Formally, the relationship richness (RR) of a class Ci 
is defined as the number of relationships that are being 
used by instances Ii that belong to Ci (P(Ii,Ij)) compared to 
the number of relationships that are defined for Ci at the 
schema level (P(Ci,Cj)). 

),(

)(),,(

ji

iiji
c CCP

ICIIIP
RR

∈
=  

The result of the formula will be a percentage 
representing how well the KB utilizes the knowledge 
defined in the schema regarding the class in focus. For 
example, if most classes have low RRC values, this would 
mean that instances are using only a few number of the 
class relationships in the schema in contrast to another 
ontology where instances have relationships that span 
most of the relationships available at the class level in the 
schema. 

Connectivity: This metric is intended to give an 
indication of the number of relationships instances of each 
class to other instances. This measure works in tandem 
with the importance metric mentioned above to create a 
better understanding of how focal some classes function. 
For more details, instances within a class can be grouped 
based on the number of relationships they have with other 
instances. 

Formally, the connectivity (Cn) of a class Ci is 
defined as the number of instances of other classes that 
are connected to instances of that class (Ij). 

)(),(, ICIIIPICn iijij ∈∧=  

The result of the formula will be an integer 
representing the popularity of instances of the class. A 
class with a high Cn plays a central role in the ontology 
compared to a class with a lower value. This measure can 
be used to understand the nature of the ontology by 



indicating which classes play a central role compared to 
other classes. 

Readability: This metric indicates the existence of 
human readable descriptions in the ontology, such as 
comments, labels, or captions. This metric can be a good 
indication if the ontology is going to be queried and the 
results listed to users. 

Formally, the readability (Rd) of a class Ci is defined 
as the sum of the number attributes that are comments and 
the number of attributes that are labels the class has. 

labelrdfsAAcommentrdfsAARd :,:, =+==
 

The result of the formula will be an integer representing 
the availability of human-readable information for the 
instances of the current class. 
 
5. Implementation and Experiments 
 

We implemented the metrics presented above in a 
Java-based prototype. The system first calculates the 
ontology schema metrics, which is defined using an 
RDFS or OWL file, and then uses the given RDF file to 
compute the instance metrics. Our implementation uses 
the Sesame RDF store [4] to load data for the ontology 
schema and KB. For a data stored, Sesame and Jena were 
considered. Finally, Sesame was selected because it was 
able to handle large data sizes compared with the Jena  
data store [9]. 

The main obstacle in experimenting with our model 
was the lack of ontologies that offer their schema and 
have a KB of a large size (>1 MB) reflecting the intended 
use of the schema. 

Results of running the application on the following 
ontologies are discussed below: 
1. SWETO. SWETO is our general purpose ontology 

that covers domains including publications, 
affiliations, geography and terrorism. 

2. TAP [6]. TAP is Stanford’s general purpose ontology. 
It is divided into 43 domains. Some of these domains 
are publications, sports, and geography. 

3. GlycO [20]. GlycO is another ontology under 
development in the LSDIS Lab for the Glycan 
Expression. Its goal is to develop a suite of databases 
in addition to computational tools that facilitate 
efficient acquisition, description, analysis, sharing and 
dissemination of the data contained therein. 

4.  
Ontology Classes Instances Inheritance 

Richness 
SWETO 44 813,217 4.00 
TAP 3,229 70,850 5.36 
GlycO 352 2,034 1.56 

Table 1. Summary of SWETO and TAP 
 

The table above shows that TAP is the most general 
due to the large value for its inheritance richness (fan-out) 
and  the richest ontology in the three with the largest 
number of instances. GlycO, on the other hand, is clearly 
domain specific as indicated by its small number of 
subclasses per class and by its small number of instances 
with a relatively high number of subclasses per class and 
a large number of instances, SWETO is somewhere in the 
middle, and it can be classified as a moderately general 
purpose ontology. 
 
5.1. Class importance 
 

Using the class importance metric to compare the 
above three ontologies clearly shows how they are 
intended to be used. Figure 2 shows the most important 
classes in each ontology. 
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(c) 
Fig. 2. Class importance in (a) SWETO (b) TAP 

and (c) GlycO 
 
From the figure it can be clearly seen that classes 

related to publications are the dominant classes in 
SWETO. While, with the exception of the Musician class, 
TAP gives consistent importance to most of its classes 



covering the different domains it includes. The nature of 
the GlycO ontology is reflected in the classes that are 
most important. The importance of the “N-
glycan_residue” and the “alpha-D-
mannopyranosyl_residue” and other classes show the 
narrow domain of GlycO is intended for, although the 
“glycan_moiety” class is the most important class 
covering about 90% of the instances in the KB. 
 
5.2. Class connectivity 
 

As explained above, class connectivity is used to 
indicate which classes play a more central role than other 
classes, which is another way of describing the nature of 
an ontology. Figure 3 shows the most connected classes in 
each of the three ontologies. 
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Fig. 3. Class connectivity in (a) SWETO (b) TAP 
and (c) GlycO 

 
Figure 3 above shows that SWETO also includes 

good information about domains other than publications, 
including the terrorism domain (Terrorist_Attack and 
Terrorist_Organization), the business domain (Bank and 

Company) and geographic information (City and State). 
In a similar manner, TAP continues to show that it covers 
different domains, and its most connected classes cover 
the education domain (CMUCourse and 
CMUSCS_ResearchArea), the entertainment domain (TV 
and Movie), and other domains as well. GlycO’s specific-
purpose nature is evident from the Glycan related classes 
that are most connected. 
 
5.3. Class readability 
 

Class readability is a useful metric when there is an 
intention to frequently use an ontology by humans. Figure 
4 shows the most readable classes in each of the three 
ontologies. 
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Fig. 4. Class readability in (a) SWETO (b) TAP 
and (c) GlycO 

 
With different degrees, all three ontologies include 

readable information. SWETO does not provide human 
readable information to most of the classes, which can be 
a concern if the ontology is going to be used by humans. 
On the other hand, both TAP and GlycO can be 



considered human-friendly as they provide descriptive 
information for most of their classes. 
 
6. Related Work 
 

In recent years, increasing interest has been given to 
ontology design and quality. In [7], the authors propose a 
complex framework consisting of 160 characteristics 
spread across five dimensions: content of the ontology, 
language, development methodology, building tools, and 
usage costs. Unfortunately, the use of the OntoMetric tool 
introduced in the paper is not clearly defined, and the 
large number of characteristics makes their model 
difficult to understand. 

 [10] provides a seven-step guide for developing 
ontology. The steps include guidelines ranging from what 
to include in the ontology, how to build a good class 
hierarchy, how to create class slots (attributes), and finally 
to populating the KB of the ontology. This guide is 
intended for developers and would not help users in the 
evaluation of an existing ontology. 

[13] uses a logic model to detect unsatisfiable 
concepts and inconsistencies in OWL ontologies. The 
approach is intended to be used by ontology designers to 
evaluate the quality of their work and to indicate any 
possible problems. 

In [19] the authors propose a model for evaluating 
ontology schemas. The model contains two sets of 
features: quantifiable and non-quantifiable. It crawls the 
web (causing some delay, especially if the user has some 
ontologies to evaluate), searches for suitable ontologies, 
and then returns the ontology schemas’ features to allow 
the user to select the most suitable ontology for the 
application. The application does not consider ontologies’ 
KBs’ quality that can provide more insight into the way 
the ontology is used. 

[11] defines a framework for comparing ontology 
schemas. It compares CYC, Dahlgren’s, Generalized 
upper model, GENSIM, KIF, PLNIUS, Sowa’s, TOVE, 
UMLS, and WORDNET. The framework defines 
characteristics that can be used to compare these 
ontologies. These characteristics are divided into the 
following groups: design process, taxonomy, internal 
concept structure and relations between concepts, axioms, 
inference mechanism, applications, and contribution. The 
authors' goal was a review of current design ontology 
schema design techniques by manually inspecting them 
and classifying them into different design categories. 

In [18], the authors introduce an environment for 
ontology development called DODDLE-R. DODDLE-R, 
which consists of two parts: a pre-processing part that 
generates a prototype ontology, and a quality 
improvement part to refine that ontology. The quality 
improvement part focuses on fixing the problems related 
to the issue of Concept Drift where positions of particular 

concepts changes depending on the domain. This 
approach can be helpful for experts trying to build an 
ontology from scratch, but it is does not serve users who 
are not design experts and who only want an ontology that 
fits their needs. 

Table 2 below summarizes the approaches discussed 
above. It considers the target audience (‘D’ = 
‘Developers’ and ‘E’ = ‘End Users’), whether the 
approach is automatic or manual, whether it considers the 
schema or both the schema and the KB (‘S’ = ‘Schema’), 
and whether the approach allows the user to specify the 
ontologies s/he wants to analyze. 

Table 2.  Summary of current ontology quality 
management approaches 

Approach Target Auto/Man S/KB Ontology 
OntoMetric D Manual S Input 
OntoDev D Manual S+KB Input 
Swoop D Auto S Input 
Charac D + E Auto S Crawled 
Survey D Manual S Input 
Doddle-R D Manual S Input 
OntoQA D + E Auto S+KB Input 

 
8. Conclusions and Future Work 
 

In this paper, we show how OntoQA can be used to 
describe ontologies in a way that enables the user or 
ontology developer determine the quality of an ontology.  

We envision future releases of OntoQA to allow the 
calculation of domain-dependent metrics that make use of 
some standard ontologies in a certain domain. We are also 
planning on making OntoQA a web-enabled tool where 
users can enter their ontology files’ path and use our 
application to measure the quality of the ontology. 
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