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ABSTRACT

This chapter discusses an extended deductive database prototype system, Q-Data,
developed by Bellcore to improve data quality through data validation and cleanup.
The key technology component of Q-Data is the extended deductive database sys-
tem LDL++4, developed at MCC. We discuss the issues of data quality improvement,
the relevance of the deductive database technology such as the LDL++ system to
data quality improvement tasks, and the system architecture of the prototype. Fur-
thermore, we describe our experiences using the deductive database technology in
an on-going Q-Data trial attacking a real-world problem with test data from oper-
ational systems. Experiences related to engineering aspects of both the deductive
database system and other component technologies, as well as pragmatic aspects of
the implementation of Q-Data as a distributed system, are discussed.

1 INTRODUCTION

Data 1s considered to be a corporate resource. Good data quality is critical to
efficient, high-quality operations in any enterprise. However, the issue of data
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quality has received little attention in database literature [8]. A significant
percentage of data in most companies are of poor quality [12]. The impor-
tant dimensions of data quality include accuracy or correctness, completeness,
consistency, and currentness [5].

Examples of poor data quality include errors in input data (e.g., a partial
or nonexistent address), data inconsistencies (e.g., different customer billing
addresses for the same customer or incorrect Zip code for the location), and
unintended duplication or redundancy (e.g., multiple customer records because
of different representations of the same customer such as DEC, Digital Equip.
Corp., and Digital Equipment Corporation) — often contributed by duplicate
or redundant data produced by different processes and organizations. Poor
data quality is a result of a variety of factors, including flawed data acquisition
and data creation processes, flawed data update processes, inability to enforce
constraints among related data in multiple databases [7], duplicate data pro-
duced by different methods, organizations and processes, process re-engineering
and company reorganizations.

Two of the most frequent manifestations of poor data quality are:

m  Inability to complete an automated process, usually in the form
of transaction fall-out (errors) due to errors, inconsistencies, and in-
completeness in input data/requests and existing databases. These errors
increase the cost of doing business, and require human involvement to
resolve.

m  Poor customer service due to inconsistencies and incompleteness of
data. This also results in increased cost of doing business, as well as the
more serious threat of losing customers.

We are addressing two aspects of managing data quality: data validation and
data clean-up. Data validation refers to identification of data quality prob-
lems, for example by identifying inconsistent or incomplete data in inputs from
users or in the existing databases. Data cleanup (or purification) is the pro-
cess of improving data quality (usually after the data validation identifies poor
quality data), for example by removing inconsistent data or making data more
complete. We have built a prototype software system called Q-Data (where Q
stands for quality) which uses existing deductive database technology to support
data validation and clean-up. This chapter describes the Q-Data architecture,
our experiences in using a deductive database technology to build a prototype
system, and our experiences in applying that technology in an ongoing trial in-
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volving a real-world problem that involves test data from real databases. Some
of the issues discussed are related to using and testing prototype software for
solving real world problems.

Not all aspects of data quality can be determined or enforced by a computerized
system. However, deductive database technology can be a natural choice for
addressing many data quality issues, because deductive databases provide a
natural way of:

m  capturing business rules, practices and constraints that define data valida-
tion and cleanup rules, and

m  integrating those rules with access to databases where a significant portion
of corporate data reside.

Some of the solutions to data quality problems offered by deductive database
technology may be partial. While some clean-up operations can be performed
automatically in a batch mode of operation, others may involve interactive
human participation. Thus, besides rule processing and data access, Q-Data
also has a significant user interface component.

We selected the LDL++ system from the Carnot project at the Microelectron-
ics and Computer Technology Corporation (MCC) for the deductive database
component of Q-Data. In addition to the functionality of the Logic Database
Language (LDL) [9], the LDL++ system also supports definition of LDL pred-
icates implemented as C++ functions. (A predecessor to the LDL++ system
is described in [4].) This extension to basic deductive database technology is
important for certain processing-intensive operations not supported directly by
LDL. We also extended the LDL++ system to interface with Prolog. Thus
the LDL+4++ system provides us with a rich processing environment that sup-
ports both declarative logic based computation in its two flavors viz., top-down
(Prolog) and bottom-up (LDL), and procedural data manipulation using C++.
Our implementation includes interfaces to Ingres’™ ! and Oracle™ database
management systems (DBMSs) using Extensible Services Switches (ESSs) de-
veloped in the Carnot project at MCC. An additional interface to DB2TM ig
being developed, though not yet used in a trial.

Hngres is a trademark of Ask, Inc. Oracle is a registered trademark of Oracle Corp. DB/2
is a trademark of International Business Machines Corp. Sybase is a trademark of Sybase
Corp. Any omissions were inadvertant.
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In a significant trial involving the prototype Q-Data system, we developed a set
of rules to identify incompleteness and inconsistencies in data from a customer
database of a client of Bellcore, display such data to a user, suggest correct
replacement values, and update the database with the corrected information.
Rules can be written that identify dirty data (i.e., data that violate integrity
constraints) and used to identify inconsistencies during data validation, or they
can be written to describe the integrity constraints, in which case the system
searches for exceptions to such constraints. FEnforcing data consistency and
completeness rules, such as the ones developed for this trial, against an existing
database is an excellent real-world test of deductive database concepts and
software.

A goal of our work has been to determine whether deductive database systems
are suitable for data validation and cleanup applications, and to evaluate the
performance of the LDL++ system, to determine whether it is ready to solve
a class of real-world problems related to data quality. Some of the needed im-
provements go beyond the scope of the basic deductive databases technology
(viz., issues of distributed and client-server systems). As discussed in some de-
tail in this chapter, we found that the technology holds significant promise,
although the current implementation needs some engineering improvement.
Deductive database technology has been advertised to be of great value for
complex, data intensive applications; we believe ours is one of the early efforts
to substantiate its utility for a class of real world applications.

The rest of this chapter is organized as follows. Section 2 briefly discusses some
of the related work. Section 3 describes the overall data cleanup problem faced
by a typical customer, and identifies several specific data cleanup tasks that
are used as examples. Section 4 describes the software architecture for the
Q-Data prototype system. Our experiences analyzing available technologies as
components of Q-Data, and designing, building, and testing the prototype are
discussed. We also describe in greater depth the strengths and weaknesses of
LDL, Prolog, C++ and SQL languages and their implementations, for searching
and control, database access, and rule specifications. In Section 5, we consider
pragmatic and engineering issues. We present our conclusions in Section 6.

2 RELATED WORK

Our investigation in data validation and cleanup 1s driven by specific needs of
our clients. These needs are similar to those discussed (albeit at a high-level)
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in [10] and [16]. [10] discusses developing a (new) corporate subject database
consisting of customer information by cleaning up data from multiple legacy
systems. One application discussed in [16] involves verifying that related data in
three legacy application systems are consistent. Another application discussed
in [16] involves establishing correct location information in the input data with
the help of a reference location database, and using that reference database to
clean previously created location data in an application database.

There is an extensive literature on deductive databases, ranging from loose-
couplings of Prolog interpreters to relational DBMSs, through interfacing par-
allel logic languages (e.g., Parlog) to DBMSs [2], and to compiled, set-at-a-time
processing of logic queries against a database. Some of the significant efforts
that also involve significant prototyping and in some cases performance eval-
uation include BERMUDA [6], BrAID [17], the LDL++ system [1] and Coral
[14, 18, 15]. Our choice of the LDL++ system was guided by the merits of
the system in functional terms, especially the ability of the LDL++ system to
access commercial DBMSs of interest to us and its interface to C++, as well
as very important pragmatic considerations, such as:

availability of technical support,

m  experience with and use of the LDL++ system in other (although perhaps
less demanding) applications,

m  interests of our clients in the LDL++ system, and

m  availability of the source-code for possible future productization or long-
term maintenance.

3 EXAMPLES AND A TRIAL
APPLICATION OF DATA VALIDATION
AND CLEANUP

In this section, we present an overview of our client’s application. We then
discuss classes of data validation constraints, which, when violated, indicate
that data has become corrupt, or “dirty”. These constraints are illustrated
with examples taken from the application. LDL rules for identifying “dirty”
data, i.e., when a piece of data violates the validation constraints are also
demonstrated. The data cleanup rules, i.e., the rules which specify the “fix*
for ”dirty” data are also discussed.



3.1 An Example Application

In this application, “dirty” data from existing operational systems is “cleaned”
and a new shared corporate database is populated with “clean” data. The
data relates to the client’s customers, and the telephone services that the client
provides to its customers at different locations. The data is in several tables
in a relational DBMS (some of these tables are populated by extracting data
from non-relational databases of legacy applications). Figure 1 shows the most
important fields for five tables in this database. The key columns for each table
are in boldface. For our trial of Q-Data, our client provided a significant sample
(13 Megabytes) of the database taken from operational systems.

The algorithm used by the client to add information to the database sometimes
creates new locations and enterprises when it should be adding to existing
locations and enterprises. Frequently, this is caused by names being entered
with spelling errors, abbreviations, or different word boundaries. The client
supplied a “soft-match” algorithm that could match two strings in spite of
spelling errors, abbreviations, and different word boundaries. One of the main
requirements is to search the database and remove the duplicated entries. In
addition, the client wanted a flexible system, so that they could implement
additional validation and cleanup rules as they were established. The rules
could also be used to clean up different databases.
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3.2 Examples of Data Validation Constraints

We 1dentified three broad classes of data validation constraints. The classes
are domain value constraints, quantitative constraints (which include, as spe-
cial cases, uniqueness constraints and referential integrity constraints), and
miscellaneous other constraints. Additional data validation constraints could
be generated by way of good data modeling techniques.

Domain Value Constraints

This simple type of constraint limits the set of values that can appear in a
given column of a given table. An example domain value constraint is that a
column contains an integer between 0 and 100; another is that it contain either
the letter Y’ or the letter ‘N’. Most modern DBMSs will enforce value domain
constraints as tuples are added or modified. However, we frequently need to
validate and clean data that were generated by legacy applications that were
built using DBMSs that provided little support for enforcing semantic integrity
constraints.

Example:

Each value in the column ‘Type’ in the ‘Addresses’ table should be one of
‘BLG’, ‘LST’, or ‘SER/’. This would be expressed in LDL as:

AddressTypeViolation(TelNumber, Adrs_type) <-
addresses(TelNumber, _, Adrs_type),

Adrs_type "= ’BLG’,
Adrs_type "= °LST’,
Adrs_type "= ’SER’.

Quantitative Constraints

A quantitative constraint specifies that the number of items that satisfy a
given condition fall within a given range. Uniqueness constraints and refer-
ential integrity constraints are two special cases of quantitative constraints,
where the condition is existence, and the quantity is either one (for uniqueness
constraints), or one or more (for referential integrity constraints).
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Examples:

m  There should be at least one billing name, and exactly one billing address
for each location. The constraint on addresses cannot be expressed as a
referential integrity constraint, because the association from LocCode to
billing name and billing address is through one of the TelNumbers. The
LDL code for the billing name constraint is:

billingNameViolation(Location) <-
billNamesPerLocation(Location, BillNameSet),
cardinality(N, BillNameSet),
N >1.

billNamesPerLocation(LocCode, <BillName>) <-
locations(_, LocCode),
numbers (TelNumber, LocCode),
names(BillName, ’BLG’, _, TellNumber).

m  Each location should only appear once.

m  Each enterprise should be represented by only one row in the ‘Enterprises’
table. This requires the use of soft match on the EntName column.

Uniqueness constraints

Uniqueness constraints, where the value of attributes in each row of a given
table must be unique, are enforced by most DBMSs. Defining a column as a
key for a table implies that all the values in that column should be unique.
Examples of uniqueness constraints for this application include:

m ‘EntCode’ in the ‘Enterprises’ table, and

m  the set of attributes (TelNumber, Type, Number) in the ‘Names’ table.

Referential Integrity Constraints

Referential integrity constraints specify that values of an attribute in one table
must occur in another table (possibly being managed by a different DBMS).
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Examples:

m  Every row in the ‘Locations’, ‘Numbers’, ‘Names’, and ‘Addresses’ ta-
bles should be represented by a row in the table to the left (‘Enterprises’,
‘Locations’, and ‘Numbers’). The first two are expressed in LDL by the
following:

LocationRefIntegViolation(EntCode)<-
Location(EntCode, _),
“Enterprise(_, EntCode, _).

NumberRefIntegViolation(LocCode) <-
Number(_, LocCode),
“Location(_, LocCode).

m  Every row of ‘Enterprises’ and ‘Locations’ must have at least one row
referring to it in the table to its right (‘Locations’ and ‘Numbers’).

m  There should be at least one listing name, and one listing address for each
Telephone Number.

Other Constraints

Of course, specific problems may involve constraints that do not fit into any
ofthe above categories. These are general constraints.

Examples:

®m  Rules about formatting across columns (i.e., that the street number and
street name components of an address should be in separate columns).

m  Value of one attribute should indicate which row in a set of rows has the
largest (or smallest) value of another attribute.

3.3 Examples of Data Cleanup Rules

The second and third quantitative constraints (in Section 3.2.2) that require
locations only have one entry in the ‘Locations’ table, and to have only one
entry in the ‘Enterprise’ table for every customer (enterprise) is a significant



Figure 2 Merging Enterprise Codes

challenge facing our client. Figure 2 shows an example from the Enterprise,
Location, and Telephone Number hierarchy, where an enterprise is represented
by two different enterprise codes that should be merged. Once they are merged,
the corresponding Location codes must be examined to identify location infor-
mation that must be merged.

The following strategy is used for dealing with potential duplication of enter-
prise information:

B When two tuples from the ‘Enterprise’ table (i.e., two distinct Enterprise
Codes) have similar names, neither name appears on a reference list of
franchises, and at least one address is associated with both Enterprise
Codes, the enterprises really are the same, and should be merged together.

m  Two tuples from the ‘Enterprise’ table have names that are similar, nei-
ther name can be found on a reference list of franchises, and there are no
addresses common to the two. In this case, it is likely, but not definite,
that the enterprises are the same. A user should be presented with the
information, and asked to verify that the similar names really do refer to
the same enterprise.

The requirement that all addresses should be valid warrants additional explana-
tion. The customer has a reference database of geographical information, which
includes the names of all the streets within villages, townships, boroughs, and
cities. A different DBMS supports this database.
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3.4 Maintenance of Clean Data

While planning a project to clean dirty data, a system architect should also
consider the causes of data becoming dirty, and take preventive action to see
that this does not happen again. Once the databases are clean (i.e., all relevant
constraints are satisfied), the application programs and DBMSs must maintain
that state of cleanliness.

One approach to this would be to create a data validation module that operates
on input requests. This module would examine data contained on an update
request, evaluate the data validation rules, and consult the current contents
of the database to determine whether the request can be satisfied, or must
be rejected. This approach does not address all possible scenarios (e.g. data
becoming out-of-date with the passage of time).

4 SYSTEM ARCHITECTURE AND
FEATURES

This section describes the functional architecture and the features of the Q-
Data prototype. The partitioning of the functionality of the system into three
main layers is discussed, and the functionality of each layer is identified. The
choice of an appropriate technology and language for the rule specification
and processing layer i1s discussed. Alternatives for external database access
are discussed, and the component choices for the various pieces of Q-Data are

1dentified.

4.1 Overview of the Architecture

We derived the requirements for this project after discussions with the cus-
tomer about their needs. Based on these requirements, we decided that the
implementation of the prototype would have to tackle three sets of issues: user
interface, rule/program specification and processing, and database access. The
Q-Data architecture thus follows the industry practice of partitioning software
functionality into user interface, information processing, and data storage and
management as suggested in the OSCATM Architecture[3].

As we started this project, we noted that our requirements for access to data,
and searching and manipulating that data, could be met, at least function-
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ally, by using the software developed by the Carnot project and its predecessor
project on deductive databases at MCC. Specifically the LDL++ system com-
bines a compiler for a declarative, logic-based programming language (LDL)
with the ability to access functions written in C++4, and the means to access
external databases.

Currently, the LDL++ system can access data in several commercial relational
DBMSs and an object-oriented DBMS. Access to data in relational databases
is important since it is easy to access and manipulate data with the industry
standard query language SQL. Also, some RDBMS vendors provide gateways
that enable (indirect) SQL access to additional data on a mainframe resident
DB2 DBMS. Data for our trial application were in a relational database. A
significant portion of telecommunications data also reside in databases under
the control of application systems called Operation Support Systems (OSSs). In
future, by creating access functions in C++ and using other interface software
developed at Bellcore, we can enable the Q-Data system to access mainframe
based OSS data from workstation based environments.

4.2 System Architecture

In this section, we describe the features of each of the three layers identified in
the previous section: user interface, rule/program specification and processing,
and database access. Figure 3 shows the Q-Data system architecture. ITtems in
dotted lines have not yet been implemented.

Graphical User Interface

The Q-Data architecture features a Graphical User Interface that:

m  enables the user to input information that the processing layer will check
against the databases, using the data validation and cleanup rules,

m  shows the user available validation (data analysis) and/or data cleaning
choices (queries),

m  allows the user to invoke the validation and/or cleanup operations,

m  presents data whose quality is suspected to be poor to the user for review,
and



Figure 3 Q-Data System Architecture
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m  provides a mechanism for the user to make corrections with the assis-
tance of the system (assisted cleanup) or without (manual cleanup). Some
cleanup can be totally automatic without user involvement. Section 4.5
describes further these modes of data validation and cleanup.

Rules/Program Specification and Processing Layer

Application experts or database administrators create rules and programs that
capture business-specific rules or general (business-independent) constraints re-
garding data quality. The processing component then searches the data sources
to find all data that satisfy (or, depending on the semantics, violate) the rules.
Optionally, automatic cleanup can also be performed using appropriate rules
and programs. The key features of this layer are:

®m  Rules are written in powerful, logic-based languages (Logical Data Lan-
guage (LDL) and Prolog) and may involve predicates implemented by func-
tions written in a procedural languages (C and C++), to search for and/or
manipulate data stored in DBMSs.

m  Rules can be dynamically added in some cases.

®  Any rule can access (read/update) data in multiple databases if the LDL++
system provides access to the involved databases.

m  Invocation of each query is treated as a separate transaction, so that all
side-effects are committed or rolled back together.

The LDL++ system/C++ External Predicate Interface

The LDL++ system enables the user to define and implement predicates us-
ing the C++ language. The system provides interface functions that enable
external predicates to:

m  examine and create data items that cross the interface between the external
predicate and the LDL++ system,

m  discover whether the predicate is being called for the first time, or the
LDL++ system is backtracking into the predicate because a later predicate
failed,

®  maintain a private state between predicate invocations,
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m  invoke other predicates (these could be implemented within the LDL++
system or as external predicates), and

m  be dynamically linked into a running process of the LDL++4 system.

In our trial, we used the external C++ interface to interface the LDL4+ system
with a stand-alone Prolog implementation of the soft match algorithm.

Database Access Layer

The database access layer provides access to data in source, reference, and
target databases. The features of the database access layer include:

m  Database specification separate from rules (i.e., rules are written without
regard to which database contains the data).

m  Client/Server or distributed access to several relational DBMSs, either
through an interface built into the LDL++ system (for Sybase” | and
possibly DB/2), or through an Extensible Services Switch (ESS), which
enables the LDL4++ system to communicate with multiple DBMSs from
different vendors through a single interface.

m  Preferred database access is through Remote Data Access (RDA) standard
via SQL Access Group (SAG)/Call Level Interface (CLI) Application Pro-
gram Interface (APT).

m  Useof industry standard communication technology where possible (TCP/IP).

We used the separation of the database specification from the rules during
development, and the Client/Server access to an Oracle DBMS through the
ESS and Oracle’s SQL*NET product.

4.3 Alternatives for the Rule/Program
Specification and Processing Layer

We now enumerate and discuss the various language and technology choices
for the various data validation and cleanup tasks to be handled by the rule
specification and processing layer. We have identified two critical functions for
data cleanup tasks for which language and technology choices have to be made:



16 CHAPTER 1

m  The primary function of all data validation and cleanup tasks is query
processing that involves retrieving and updating all the data which satisfies
the conditions specified in the data validation rules, followed by updating
the database so that all of the integrity constraints on the database are
satisfied. We discuss the advantages and disadvantages of using Prolog,

LDL and Embedded SQL for this function.

m  The other critical function is the comparison of different pieces of data in
the system. This typically is expressed in the form of comparisons between
and operations on strings. We discuss the advantages and disadvantages
of using Prolog, LDL and C++ for this function.

Prolog

In this section we investigate the advantages and disadvantages of using Prolog
for the two critical data cleanup functions: query processing and string com-
parison.

Prolog for query processing: Disadvantages

One major sub-task in Q-Data was retrieving all data which satisfied the con-
ditions specified in a rule to retrieve the “dirty” data. We found Prolog to be
unsuitable for the following reasons:

m  Prolog semantics retrieve the first result of a query; the programmer must
perform extra work ? to retrieve all possible solutions to a query.

m  The programmer must explicitly understand and account for Prolog’s rule
selection mechanism while writing Prolog rules, and use procedural con-
structs like “cut” to direct the Prolog system toward the desired goal. This
detracts from the advantages of declarative programming, and limits the
ability of the Prolog interpreter to optimize query processing.

m  Prolog does not guarentee that any particular query will terminate.

m  Prolog does not guarantee that any particular query will return all match-
ing data items.

2 A simple generate and fail loop around a query may not be sufficient, because the rule
produces valid tuples, but still fails. Because of the failure, predicates that use such constructs
must never be used to compose more complex predicates, and must be segregated from the
main logic of the program.
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Prolog for string matching: Advantages

Another major sub-task in Q-Data was to determine whether two strings were
duplicates of each other. A special kind of rule called a “soft string match” was
needed which would match two strings even if there were misspellings, abbre-
viations, letter transpositions and/or different word order in the two strings.
We found Prolog to be very suitable for this sub-task because:

m  The logic program for the “soft string match” naturally lends itself to a top
down computation. It can be characterized by the classical “list append”
problem. Prolog having a top-down model of computation is suitable for
the purpose.

m  Prolog would evaluate only one computation path in the proof tree and
would stop as soon as it evaluates the first possible way. A bottom-up
language like LDL would evaluate all the computation paths of the proof
tree, i.e., it would evaluate all possible ways two strings might “soft match”
with each other.

m  List manipulation predicates (append, cons, etc.) in Prolog are imple-
mented using C functions and hence are more efficient than equivalent
processing in the LDL++4 system.

We were provided with a Prolog implementation of the soft match algorithm by
our client. We ported it to LDL and discovered that the Prolog version runs two
orders of magnitude faster than the LDL version. During the development of
the Q-Data system, we developed C++4 code that enables the LDL++ system
to pass data to a rule implementation written in Prolog. The effort was entirely
successful, and the overhead to access the Prolog implementation is low.

C++ (A procedural language) and SQL

In this section we investigate the advantages of using C++ for the important
data cleanup function of string matching. We also investigate the disadvan-
tages of using SQL embedded in C++ for the data cleanup function of query
processing.

Embedded SQL with a procedural language (C++) for query pro-
cessing: Disadvantages

Another option we considered was to embed the data retrieval statements (SQL
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in this case) within a procedural programming language (e.g., C++). Disad-
vantages of this approach are well known:

m CH4+ is not a declarative language. The semantics of a query are never
explicitly stated; they only emerge from the process of retrieving data. We
are interested in building a prototype in which the user has the freedom to
modify old data validation and cleanup rules and specify new data cleanup
rules with ease. The user would have to delve in C++ code that directs
the search procedure to change the data cleanup rules.

m  In C4++, the ability to specify a program independent of the database is
absent. In addition, the programmer has the additional burden of declar-
ing temporary variables, storing intermediate results, and managing SQL
cursors. For example, user would have to write a new program every time
a new database 1s added to the system.

C++ for operations on Strings: Advantages

The C and C++ libraries for manipulating strings are well known, frequently
used, efficiently implemented, and tested by time. They are clearly the tool
of choice for manipulating strings of characters. The external predicate inter-
face in the LDL++ system enables developers to use these libraries for string
manipulation in LDL programs.

The LDL++ System

In this section we investigate the advantages and the ease of specifying the rules
in the LDL++ system, which has a declarative framework.

The LDL++4 system for query processing: Advantages

The LDL++ system provides set-at-a-time semantics which retrieves all so-
lutions of a query at a time, and implements a powerful, purely deductive
language (LDL) for expressing rules. In addition, LDL takes into consider-
ation the issues of updating databases (and other side-effects), and supports
these inherently procedural features within the overall declarative framework.
While other languages used in deductive databases can also support these pro-
cessing requirements, using the LDL+4+ system offers two distinct advantages:
integration with C4+4, and access to commercial DBMSs.
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An important advantage of using LDL over embedded SQL is the ease of pro-
gramming, which is a consequence of the declarative nature of LDL. The ad-
ditional burden of declaring temporary variables, storing intermediate results,
and managing SQL cursors is avoided. C/C++, SQL, or SQL embedded in
C/C++ cannot easily specify some of the complex data manipulation involved
in data quality rules. SQL code, even when it is equivalent to several rules of
LDL, could run a few pages and may require many levels of nesting.

4.4 Alternatives for the External Database
Access Layer

Data to be cleaned resides in a variety of commercially supported relational
database management systems. The query processing system must efficiently
access data in a variety of DBMSs. We now discuss the advantages and dis-
advantages of systems built around Prolog, SQL embedded in a procedural
language, and LDL.

Prolog

m  There is an impedance mismatch between Prolog and databases being
searched by the rule processing layer. Prolog retrieves and processes facts
a tuple at a time (e.g., see [11]) while database queries in SQL return
answers a set at a time. This constrains designers who interface Prolog
systems to DBMSs, to query those databases a tuple at a time. This
increases the load on the DBMS and the network, or requires optimized
data retrieval that combines the evaluation of several predicates into a
single retrieval from the database.

SQL Access Group Call Level Interface (SAG/CLI) and Embedded
SQL

m  There is an impedance mismatch between SQL (set-at-a-time) and C++
(tuple-at-a-time) which requires additional programming effort and spe-
cialized buffering strategies.

m  Applications using SAG/CLI or Embedded SQL will experience great dif-
ficulty interfacing with DBMSs from multiple vendors. FEach vendor’s
SAG/CLI library is required to use the same name for the standard func-
tions to access the vendor’s DBMS. This means that it is impossible for an
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application to simultaneously access databases from multiple vendors using
the SAG/CLI. Also, there is no assurance that different vendors’ methods
and tools for using embedded SQL will use methods that can coexist.

LDL

m  Databases return all solutions set-at-a-time. LDL follows the set-at-a-
time semantics. Typical database applications lend themselves naturally
to bottom up computations and can be characterized by the “fibonacci
number generator” programs. LDL semantics are defined as a bottom-up
evaluation and hence 1s suited for database applications.

4.5 Component Choices

The LDL++ system is a good choice for the query processing and database
access modules, because it allows us the flexibility to match languages that
offer different semantic features to different aspects of data cleanup problems.

LDL is the best overall choice for writing rules for general pattern matching,
and filtering the greatest amount of data, because the LDL++ system’s query
optimization can combine several rules into a single SQL statement, which
more tightly specifies the data needed from the DBMS, and lets the DBMS
perform the actual selection of the data. This reduces the amount of data
that the DBMS returns to the query processing module, and enhances overall
performance since the DBMSs are highly optimized for selecting data.

C++ is appropriate for rules that are naturally expressed procedurally, or when
the rule can be based on existing C++ code (such as the string library).

Prolog is appropriate for rules where several of the following conditions are
met:

m  the rules are best expressed declaratively,
m  there is a significant amount of computation needed to evaluate the rules,
m  only one or a few solutions are returned, and

m  there 1s minimal need for access to stored data.
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5 PRAGMATIC AND ENGINEERING
EXPERIENCES

In this section, we discuss our experiences in developing the Q-Data system
that reflect on practical engineering issues. First, we discuss three different
modes of data cleanup operations: manual cleanup, assisted cleanup, and auto-
matic cleanup, and discuss the advantage of batch validation with interactive
cleanup. Then, we describe the physical system configuration. Next, we de-
scribe the impact of data location on system performance, and an important
“quick fix” that enabled the LDL++ system to use SQL aggregate operators
to significantly improve the performance of an important type of query. We
then discuss techniques for rewriting LDL queries to improve performance, and
describe where we believe the LDL4+4 system could perform this tuning auto-
matically. We conclude with a summary of the key engineering results.

5.1 Modes of Data Validation and Cleanup
Operations

We have 1dentified three approaches to cleaning invalid data: manual cleanup,
assisted cleanup, and automatic cleanup. Manual cleanup is the simplest ap-
proach, as it only involves presenting the user with the invalid data, and places
responsibility for correcting the data on the user. In assisted cleanup, the
validation and cleanup system proposes replacements and additions to the
databases that will make it correct (consistent and complete). The user verifies
the proposed changes or selects from among several choices proposed by the
system. Automatic cleanup means that the system modifies the database to
make it correct (leaving an audit trail) without interacting with a user. As-
sisted and automatic cleanup systems are possible when the rule developers can
anticipate the nature of the dirty data, and write rules, in advance, that can
(partially or completely) correct the problems.

Batch Validation with Interactive Cleanup

Many data validation tasks that we prototyped take significant amounts of
time to process, often from 30 seconds upwards, at least given the current im-
plementation and hardware. Users find it unacceptable to wait this long for a
system to return with some results, even though manually performing the same
process would have taken two or three orders of magnitude longer. Therefore,
it is 1mportant, in a real system, for the user to be able to invoke multiple
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data validation queries in a batch mode, and then go on to other tasks while
the system searches for invalid data. Since the user may be working on other
tasks, results of data validation queries must be stored in a buffer or a file. The
user can then peruse these results and perform cleanup at any time after the
results have been obtained. Figure 4 shows the process for performing batch
validation, buffering the data, and then interactively cleaning the dirty data in
manual or assisted modes.

5.2 Physical System Configuration

The Q-Data prototype is physically implemented on multiple computers, and
runs on a busy network; the Oracle DBMS is serving many databases and
many users. Figure b shows the current distribution of functionality to differ-
ent computers. The Oracle and Ingres DBMSs are fixed on their respective
hosts by licensing agreements. The Ingres ESS must be co-located with the In-
gres DBMS, because we do not have the Ingres networking software. Because
the Oracle DBMS is shared among many users and applications, the system
performs better when the Oracle ESS is on a separate computer. This was de-
termined empirically, and indicates that retrieving data from the database, and
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processing it through the ESS? is a CPU bound task, and applying different
CPUs to the task helps performance more than the communication overhead
hurts it. We are also assuming that the Graphical User Interface will run on a
user’s workstation, while the LDL++ system and Prolog processes will be run-
ning on a faster server. We are investigating whether co-locating the LDL++
system and the Oracle ESS would improve performance.

5.3 LDL+4+4 System Performance

An important consideration is that it is not sufficient to write queries that
declaratively specify the desired results; the queries must run in a reasonable
amount of time, consuming a reasonable amount of system resources (such as
memory, network bandwidth, or processor cycles).

LDL evaluates rules by using matching (rather than unification) with magic
set optimizations to propagate constants into the queries. When a failure is
encountered, the control will backtrack through rules that have been matched,
to attempt to make further progress by rebinding variables to other values.

3Current behavior and knowledge of the components suggest to us that the ESS imple-
mentation consumes processor cycles and time that greatly exceed the functionality we need
for data access. We are investigating lighter-weight alternatives. However, throughput also
increases when a comparatively light client process, Oracle’s ad-hoc query tool SQLPLUS,; is
moved from the host with the Oracle DBMS to a user’s workstation.
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The time the LDL++ system requires to complete a query has two compo-
nents: the time required to access the relevant data, and the time required to
process the data within the LDL++4 system. The data access time can be di-
vided into two components: the time required for a DBMS to process the SQL
query, and the time required to communicate the results back to the LDL++
system. For data validation and cleanup applications, the data access time usu-
ally dominates. For simple rules (such as referential integrity validation) on a
well-configured database, the data communication time dominates the DBMS
processing time. On other queries, where the DBMS references more tables
and returns fewer tuples (i.e. the selectivity of the query is higher), the DBMS
processing time dominates.

Performance of the current system

This section briefly describes the current level of performance of the LDL++
system. Consider the following query that identifies rows that violate referential
integrity:

export refViol(KeyA, RefConstraint).

refViol(KeyA, RefConstraint) <-
table(KeyA, _, RefConstraint, _),
“refColumn(RefConstraint).

If table() and refColumn() are both tables of ground facts exported by the same
DBMS, then this query will be collapsed into a single SQL statement that can
be efficiently processed by the DBMS. The only tuples communicated will be
those which satisfy the overall query; data communication time is optimal.
On the other hand, if the two tables are supported by different DBMSs, then
the LDL++4 system has to perform the join. If the database systems can be
modified so that a temporary copy of the refColumn relation is loaded into
the same DBMS as the table being checked ahead of time, both of these costs
can be almost entirely avoided. The join operation gets pushed into one DBMS
query, and the only tuples returned by the database would be those that satisfy
the overall rule.

The LDL++ system performs joins across DBMSs by projecting out needed
columns of the first table, and then, for each row in table, attempting to select
a matching row from the second table. For the example above, the LDL++
system projects out the first and third columns of table(); then, for each row,
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the LDL+4+ system selects a matching row from the table refColumn(). If this
selection fails, the pair (KeyA, RefConstraint) is added to the solution.

This approach to cross-DBMS joins generates a tuple that is communicated
back to the LDL++ system and a query against the second DBMS for each
row in the first table. Both of these times are significant in the current im-
plementation. The DBMS/ESS/LDL++ combination takes an average of 450
milliseconds to process each SQL query, and approximately 40 msec. to retrieve
each 136-byte tuple for a sustained read from a table (e.g. “select * from table-
Name”). Note that these measurements are made with a DBMS server being
used by multiple clients, and accessed over a busy network. In comparison, in
the same environment, the vendor’s ad-hoc SQL query tool takes approx. 10
msec. per tuple.

Modifications to LDL and the LDL++ system for

improved performance

At the start of this project, the LDL+4 system did not take advantage of
the aggregate operators in SQL (count, sum, min, max, and avg). Because of
the communication and query overhead described above, the LDL++ system
took orders of magnitudes longer to process quantitative validation queries than
the DBMS took to process an equivalent SQL query that uses the aggregate
operators. To resolve this shortcoming, MCC extended LDL to enable the use
of any SQL aggregate operator in the same way that set grouping is performed.
Currently, these operations are only implemented through SQL (and hence,
only operate on ground facts stored in an SQL DBMS). An implementation for
the internal database may be developed in the future (e.g. see [17]).

An example of the LDL constructs that take advantage of SQL aggregate op-
erators is in Section 5.4, “Eliminating unneeded evaluations”.

This solution, while sufficient for the short run, is unattractive in the long
run. This is a special-purpose patch to the LDL language to take advantage
of particular data access features. By requiring a separate rule to perform an
aggregate operation, the task of developing LDL rules is made more complex.
In addition, there are now two different language constructs for performing an
aggregation operation; one construct can only be used for facts stored in an
external database, while the other construct will only perform acceptably on
facts or relations stored within the LDL++ system. This is an unnecessary
complication of the language. Ideally, the LDL++4 query compiler should look
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ahead to determine if and where values are used, and use this information to
determine whether a partial evaluation of an expression is in order (for example,
only recording the number of elements in a set, rather than the value of each
member of the set.)

5.4 Performance Tuning and Future
Performance Improvements

The LDL++ system promises declarative programming — that the program-
mer need only describe the desired solution, and not be concerned with the
procedures used to arrive at the solution. However, the way a query is ex-
pressed in the LDL++ system has significant impact on the time required to
process the query. This section describes three techniques for rewriting LDL
queries that have been found useful in tuning the performance of the LDL++
system:

®  Minimizing communication by reordering and rewriting queries,
m  Eliminating redundant subexpressions, and

m  Eliminating unneeded evaluations.

To tune the performance of a query, the programmer must be aware of the pro-
cess that the LDL++ system uses to evaluate queries, and use this knowledge
to rewrite queries to reduce their overall cost.

In the future, the LDL++4 system could be improved to perform automatically
the suggested analysis during the compilation stage, to improve query perfor-
mance without forcing an extra burden on the programmer. Techniques that
have been well-developed in the compiler and query optimization communities
need to be applied to deductive databases as well.

Minimize communication by reordering and rewriting
queries

The data being retrieved from a database must be carefully analyzed to prevent
fetching the same tuple twice. Use the rules of logic to rewrite the query so
that each query sent to the DBMS selects a disjoint subset of the needed data.
The following example uses the schema presented in Figure 1.
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A TelNumber has a valid listing address if:

m  the Addresses table has a listing name and a listing address for the Tel-
Number, or

m  the Names table for the TelNumber starts with the string “NON PUB”.

The query emptyListAddr returns all the TelNumbers where there 1s no valid
listing address. The original LDL code was:

% This implementation is inefficient

emptyListAddr(TelNumber) <-
numbers (TellNumber, _),
“okListAddr (TelNumber) .

okListAddr (TelNumber) <-
names(ListedName, ‘LST’, 1, TelNumber),
stringCompare(ListedName, ‘NON PUB’, 7).

okListAddr (TelNumber) <-
names(_, ‘LST’, 1, TelNumber),
addresses(Telllumber, _, ‘LST’).

Because okListAddr() is built using the external stringCompare() predicate,
the LDL++ system cannot compress this into a single SQL statement*. The
LDL++ system evaluates this version of emptyListAddr() by copying the entire
TelNumber() column from the table numbers, and then launching two queries
(one looking for an address, the other looking for a name) for each row. This
is very inefficient. An equivalent query runs much more efficiently:

% This version is efficient
emptyListAddr(TelNumber) <-

numbers (TellNumber, _),
~addresses(TelNumber, _, ‘LST’),

4Support for SQL string comparison using “LIKE” and wild cards may be added to LDL
and the LDL++ system in the future.
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“names(_, ‘LST’, 1, TelNumber).

emptyListAddr(TelNumber) <-
numbers (TellNumber, _),
names(LN1, ‘LST’, 1, Telllumber),
~addresses(TelNumber, _, ‘LST’),
“stringCompare(LN1, ‘NON PUB’, 7).

This form of the query minimizes the number of tuples that are fetched from
the database. Every tuple that satisfies the first rule above satisfies the overall
query, and must be fetched from the database. No tuple that satisfies the first
rule satisfies the second rule, so no tuples are fetched twice. This also assures
that the set of tuples that i1s passed to stringCompare is minimal. A total of
two SQL queries are sent to the database.

Eliminating redundant sub-expressions

Performance of the LDL++4 system query can frequently be enhanced by elim-
inating redundant sub-expressions. Care must be taken, though, to assure that
eliminating common sub-expression does not increase the total communication
burden. Note that the change shown in the previous example improves perfor-
mance, but also calls for the evaluation of numbers() twice. In that example,
the LDL++4 system combines, into a single query, the evaluation of the rule
numbers() with the subsequent statement or two. So the cost of the extra
evaluation is minimal.

When intermediate results cannot be pushed down into the database; they
should be stored, rather than regenerated, as in:

rule(4) <-
subrule1(4, B),
subrule2(4, C),

subrule1(A, B) <-
generate_intermediate(4, Z),
use_intermediate1(Z, B).

subrule2(A, C) <-
generate_intermediate(4, Z),
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use_intermediate2(Z, C).

This evaluates generate_intermediate() twice. To avoid this, the query should
be rewritten as:

rule(4) <-
generate_intermediate(4, Z),
use_intermediate1(Z, B),
use_intermediate2(Z, C),

Common sub-expressions may appear where an if-then-else construct would be
more efficient. For example:

rule(4) <-
test(4),
success_rule(4).

rule(4) <-
“test(4),
failure_rule(4).

evaluates test(A) twice. LDL features an if-then-else structure that can be used
to eliminate this extra evaluation. The query should be rewritten as:

rule(4) <-
if(test(4)
then success_rule(A)
else failure_rule(4)).

Eliminating unneeded evaluations

A programmer can eliminate evaluations of expressions by looking ahead to
determine whether the full result of a given function is actually needed. Writing
code that makes use of the aggregate functions of SQL is an example of this.
Consider the following code:
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multipleAddrs(LocCode, N)<-
numbers (LocCode, _),
addrs (N, ‘BLG’, LocCode),
N >1.

addrs(N, Type, LocCode) <-
fullAddrSet(AddrSet, Type, LocCode),
cardinality(AddrSet, NI).

fullAddrSet(<Address>, Type, LocCode) <-
numbers (TelNumber, LocCode),
addresses(TelNumber, Type, Address).

The LDL++ system translates this into the following sequence of SQL state-
ments:

DECLARE LdlEssQueryCursorO CURSOR FOR
SELECT DISTINCT 1dl_t0.locCode FROM locations 1d1_t0

OPEN LdlEssQueryCursor0
FETCH LdlEssQueryCursor0
<<2223525024894

DECLARE LdlEssQueryCursor1l CURSOR FOR

SELECT DISTINCT 1dl_t1.address

FROM numbers 1dl_t0, addresses 1dl_t1

WHERE (1d1_t0.locCode=’2223525024894")
AND (1dl_t1.telNumber=1d1l_t0.tellNumber)
AND (1dl_t1.adrs_type=’BLG’)

OPEN LdlEssQueryCursori

FETCH LdlEssQueryCursori

<< PO BOX F MYTOWN ST UsA

FETCH LdlEssQueryCursori

CLOSE LdlEssQueryCursori

FETCH LdlEssQueryCursor0
<< 2224400859056

DECLARE LdlEssQueryCursor1l CURSOR FOR
SELECT DISTINCT 1dl_t1.address
FROM numbers 1dl_t0, addresses 1dl_t1
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WHERE (1d1_t0.locCode=’2224400859056’)
AND (1d1_t1.telNumber=1d1_t0.telNumber)
AND (1dl_t1.adrs_type=’BLG’)

OPEN LdlEssQueryCursori
FETCH LdlEssQueryCursori
<< 5525 CENTRAL AV  BIGCITY ST USA

FETCH LdlEssQueryCursori
CLOSE LdlEssQueryCursori

FETCH LdlEssQueryCursor0
2224403316619

This iterates through every element in the Locations table.

FETCH LdlEssQueryCursor0
CLOSE LdlEssQueryCursor0

To take advantage of the SQL aggregate function, this query should be written
as:

multipleAddrs(LocCode, N)<-
numbers (LocCode, _),
addrs (N, ‘BLG’, LocCode),
N >1.

addrs(count<Address>, Type, LocCode) <-
numbers (TelNumber, LocCode),
addresses(TelNumber, Type, Address).

Which generates the following SQL statements:

DECLARE LdlEssQueryCursorO CURSOR FOR
SELECT DISTINCT 1dl1_t0.locCode, count(ldl_t2.address)
FROM locations 1dl_tO, numbers 1dl_t1, addresses 1ldl_t2
WHERE (1d1_t1.locCode=1d1_t0.locCode)

AND (1d1_t2.telNumber=1dl_t1.telNumber)
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AND (1dl_t2.adrs_type=’BLG’)
GROUP BY 1d1_t0.locCode HAVING (count(1ldl_t2.address)>1)

OPEN LdlEssQueryCursor0

FETCH LdlEssQueryCursor0
FETCH LdlEssQueryCursor0
FETCH LdlEssQueryCursor0

CLOSE LdlEssQueryCursor0

This only fetches the LocCodes for tuples that have multiple addresses, and
avoids the performance penalty of actually copying all of the items from the
source tables into the LDL++ system.

6 CONCLUSIONS

We discovered that our choice of the LDL++ system for the deductive engine
for data validation and cleanup tasks was appropriate — in fact we plan to use
it to address real world problems in the near future. Two key advantages of
the LDL++ system to meet our requirements are:

m  The ability to express data validation and cleanup rules in LDL, Prolog,
and C++ languages can be used for complementary purposes. the LDL++
system enables the rule developer to pick the language and implementation
most suited for the particular task at hand.

m  Data lives in commercial DBMSs. For our application, the LDL4+ system
has an advantage over many other deductive database systems because it
can validate and clean data managed by commercial DBMSs in currently
deployed systems.

Our experience of using deductive database technology, in particular LDL,
showed that most useful applications of this technology will require that it
be coupled with other technological components, especially user interface com-
ponents and commercial database management systems. It is unlikely and also
undesirable that all three components be deployed on the same computer sys-
tem, so issues of open and efficient distributed computing and client/server
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technologies also come into play. Our key conclusion is that for deductive
database technology to gain wider acceptance and usage in the real world, it
must be integrated well with these technologies, especially the distributed com-
puting technology. Furthermore, this will involve meeting both research and
engineering challenges to achieve better integration.

To meet the requirements of a practical interactive application based on deduc-
tive database technology, we believe that deductive database technology will
have to be extended in two crucial aspects.

m  Operational aspects

This refers to the aspects related to configuring various processes on differ-
ent computers to meet performance requirements. Configuration choices,
such as the machines on which the the LDL++4 system server and the user
interface are executed, become important.

m  Data definition aspects

To support better optimization of query processing, the deductive database
system needs to take into account and make design choices related to the
following factors:

— The location and the size of various tables involved, to choose a good
query execution plan.

— Determining what data access methods (indices, clusters, etc.) ex-
ist, and (re)creating these structures if they are needed to improve
query performance. This has previously been the domain of database
administrators (DBA). However, deductive database systems make
the relationship between queries and access structures needed to ef-
ficiently evaluate the queries much less clear than with traditional
query languages such as SQL. Compiled deductive database systems
have the knowledge needed to advise a DBA | at compile time, where
indices and clustering are needed for adequate performance of the
queries.

— Migrating tables so that join operations can be performed within
DBMSs, instead of forcing the rule processing component to perform
the join operation.

Many of the above performance issues have been researched in distributed
database and multidatabase systems contexts. We also observed that the opti-
mization capability of the LDL++ system with respect to these issues is rather
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limited. We believe that the data definition capabilities of a deductive database
language like LDL should be enhanced to capture the above information. The
other alternative is to develop a mapping between LDL and a multidatabase
language like MSQL[19]. We may then be able to depend on the data definition
capabilities of MSQL to capture the above information and use multidatabase
query processing strategies to achieve better performance.
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