
USING COLLABORATION TASK IN ORBWORK ENACTMENT SYSTEM FOR

METEOR WORKFLOW MANAGEMENT SYSTEM

by

ZHONGQIAO LI

B.S., Shanghai Jiao Tong University, China, 1996

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirement of the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2000

 2000

Zhongqiao Li

All Right Reserved

USING COLLABORATION TASK IN ORBWORK ENACTMENT SYSTEM FOR

METEOR WORKFLOW MANAGEMENT SYSTEM

by

ZHONGQIAO LI

 Approved:

 Major Professor

 Date

Approved:

Dean of the Graduate School

Date

iv

DEDICATION

To Mom, Dad and Haibei

v

ACKNOWLEGEMENTS

This research project is part of the group effort for the METEOR Workflow research at

the Large Scale Distributed Information System (LSDIS) Laboratory of the Computer

Science Department at the University of Georgia. I would like to take this opportunity to

thank Naval Research Laboratory (NRL) for the great cooperation efforts in this project

and Iona Technologies for donating OrbixWeb software.

I am extremely thankful to my major advisor, Dr. Amit Sheth, for his invaluable

guidance and encouragement throughout my entire research and academic years. I am

also thankful to Dr. Krzysztof Kochut and Dr. John Millor for their constant advice and

help with my thesis. I would also like to thank all the excellent people in the LSDIS Lab,

especially Dr. Ismailcem Budak Arpinar, Dr. Mizuho Iwaihara, Zongwei Luo, Antonio

Jorge Cardoso, and Yufeng Chen, whose help and encouragement have been a source of

optimism whenever I am high or low. In addition, my special thanks are extended to all

my friends for their kind support for me through the years in Athens, GA. Finally, I am

sincerely grateful to my parents and Haibei who have always been encouraging and

supporting me, and have lightened every day of my life. They are the reason I could

success.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ……….………………………………………………….. v

LIST OF TABLES ………………………………………………………………….. viii

LIST OF FIGURES …………………………………………………………………. ix

CHAPTER

1 INTRODUCTION ………………………………………………….…… 1

1.1 Workflow and Workflow …………………………………………. 2

1.2 Collaboration ……………………………………………………… 4

1.3 Description and Contribution of the Thesis ………………………. 5

1.4 Related Work ……………………………………………………… 6

1.5 Organization of the Thesis ………………………………………… 8

2 THE WORKFLOW MANAGEMENT SYSTEM MODEL AND

COLLABORATION …………………………………………………… 9

2.1 Workflow and Workflow Management System ………………….. 9

2.2 Workflow Reference Model ……………………………………… 11

2.3 Collaboration and Collaboration in WFMS Context ……………… 14

2.4 Necessity for Integrating WFMS and Collaboration ……………… 21

3 THE METEOR WORKFLOW MANAGEMENT SYSTEM MODEL

AND ARCHITECTURE ………………………………………………... 23

3.1 The METEOR Workflow Management System Model …………... 24

3.2 The METEOR Workflow Management System Architecture ……. 29

vii

4 COLLABORATION MODEL IN METEOR WORKFLOW

MANAGEMENT SYSTEM …………………………………………….. 32

4.1 An Application Scenario with Collaboration ……………………. 32

4.2 Collaboration Task Model ………………………………………… 36

4.3 Collaboration Object Structure ……………………………….…… 41

4.4 General Interface between METEOR and Collaboration Tools ….. 44

5 ORBWORK ENACTMENT SERVICE FOR METEOR WFMS AND

CATCH COLLABORATIVE APPLICATION ………………………… 47

5.1 OrbWork Enactment Service for METEOR ………………….…… 47

5.2 CaTCH Application ……………………………………………….. 57

6 IMPLEMENTATION OF COLLABORATION MODEL IN

ORBWORK ENACTMENT SYSTEM ………………………………… 64

6.1 The Specification Files for Collaboration Task …………………… 65

6.2 The Collaboration Worklist Server ………………………………... 73

6.3 The Collaboration Task Scheduler ………………………………... 76

6.4 The Collaboration Worklist Item ………………………………….. 77

6.5 The Collaboration Object ……………………………………….… 78

6.6 The Collaboration Notifier ……………………………………….. 78

6.7 The Other Changes in OrbWork Enactment System ……………… 80

7 CONCLUSION AND FUTURE WORK ……………………………….. 82

7.1 Conclusion ………………………………………………………… 82

7.2 Future Work ……………………………………………………….. 83

BIBLIOGRAPHY …………………………………………………………….…….. 85

viii

LIST OF TABLES

Page

2.1 Basic Collaboration Classification ……………………………………………. 15

5.1 CORBA/Orbix Feature Used in OrbWork ……………………………………. 53

ix

LIST OF FIGURES

Page

2.1 WfMC Workflow Reference Model …………………………………………... 12

2.2 Collaboration Categories ……………………………………………………… 15

3.1 General Task Model METEOR ……………………………………………….. 25

3.2 METEOR Architecture ………………………………………………………... 29

4.1 Healthcare Collaboration Scenario ……………………………………………. 33

4.2 Simple Healthcare Workflow With Collaboration ……………………………. 35

4.3 Optional Collaboration task design mode …………………………………….. 37

4.4 Absolute Collaboration task design mode …………………………………….. 38

4.5 Status model of Collaboration task ……………………………………….…… 38

4.6 Task realization hierarchy …………………………………………………….. 40

4.7 Collaboration object structure …………………………………………….…... 42

4.8 Collaboration object transported in the workflow process ……………….…… 43

4.9 Relationship among Workflow run-time system, General interface and

Collaborative tool ……………………………………………………………... 45

5.1 OrbWork System Organization ……………………………………………….. 49

5.2 OrbWork’s Distributed Scheduler ……………………………………….……. 52

5.3 Architecture of Asynchronous component of CaTCH ………………………... 60

6.1 Functionality of the specification files in the WFMS …………………………. 65

6.2 Example of tasks file ………………………………………………………….. 66

6.3 Format of tasks file …………………………………………………………… 67

6.4 Format of CollabObjStructure File ………………………………………….. 69

6.5 Sample of CollabObjStructure File for CaTCH tool ………………………... 69

x

6.6 Format of CollabObjInvocation file …………………………………….…… 70

6.7 Smaple of CollabObjInvocation file for CaTCH tool ……………………….. 70

6.8 CollabMIMEType file for CaTCH tool ……………………………………… 71

6.9 Example of type file for the Collaboration task ………………………….…… 72

6.10 Replacement in TASKNAME-View.html between Human-Computer task and

Collaboration task .…………………………………………………………….. 73

6.11 IDL interface of Collaboration worklist manager server ……………………… 74

6.12 Collaboration worklist manager server ……………………………………….. 75

6.13 Basic structure of the notifier module …………………………………….…... 79

6.14 Basic structure of run() function ……………………………………………… 80

6.15 Additional Variables in OrbWork.properties file ……………………………... 81

1

CHAPTER 1

INTRODUCTION

It has been over ten years since the first workflow product was introduced. In the last ten

years, many vendors have offered commercial, general-purpose workflow management

systems to the market [KSM99, F95, GHS 95, SJo 96, A+ 97]. Meanwhile, lots of

research institutions have been making research efforts in some workflow technology

areas, such as workflow exception handling, adaptive workflows, transactional

workflows and synchronization of concurrent workflows, to make workflow technologies

mature.

In recent years, workflow technology has developed to some extend with those

efforts and achievements, and workflow management systems (WFMSs) have been used

by organizations that need to coordinate their processes. Nevertheless, those WFMSs are

primarily focused on providing automation within organizational environment, especially

on coordinating human activities, facilitating data management, document routing and

reporting [SK97]. From our viewpoint, we believe work coordination, collaboration and

information access are all keys to provide a comprehensive support for organizational

activities. However, on the collaboration level, many systems do not perform well

because current workflow systems are mainly process-oriented. They only define

processes that integrate related tasks to execute in a predefined order. Those tasks in a

process can only be coordinated by the WFMS, but cannot interact with other

applications out of the workflow process, which is the principle function of collaboration.

2

As the Internet technologies grow fast, progress in video-conferencing and web-

based collaboration has rapidly expanded the availability of collaboration systems and

provided better opportunities for extending the collaboration feature in the workflow

system. Recently, collaboration has become a critical issue for many organizations

because the need for interaction across the organization boundaries has become more

prevalent [C99]. Integration with collaborative software products in workflow systems

provides means to support a highly interactive, collaborative workflow. The challenge in

the collaboration area for organizations is how to effectively use the collaborative

applications in their organizational process.

In this thesis, we focus our attention on the collaboration feature in the workflow

context. We design the collaboration task model in WFMSs and implement a prototype of

the collaboration task in OrbWork enactment system for METEOR WFMS integrating

CaTCH (Collaborative and TeleConsulting for Healthcare) as a collaborative application

(Both OrbWork and CaTCH were developed by LSDIS Lab, University of Georgia). This

implementation provides the collaboration support in METEOR WFMS.

This chapter provides an introduction to the basic knowledge of the workflow

technology including a background discussion on workflows, WFMSs and collaboration

concepts. It also gives a brief overview of this thesis and the review on the related work.

1.1 Workflow and Workflow Management System

Today, organizations use WFMSs to streamline, automate, and manage business

processes that depend on information systems and human resources (e.g., provisioning

telephone services, processing insurance claims, and handling bank loan applications). A

workflow is an abstraction of a business process. It consists of activities. A popular

classification [GHS95] distinguishes three types of workflows:

3

• Ad-hoc workflows, workflows that are controlled by users at runtime. Users can

react to situations not considered at design-time.

• Administrative workflows, predictable and repeatable complex workflows

described in simple description language. Activities are mainly performed by

humans.

• Production workflows, predictable and repeatable complex workflows which are

predefined completely and in great detail using complex information structures

and involve application programs and automatic activities.

Workflow management aims at modeling and controlling the execution of

processes. A WFMS is a set of tools providing support for the necessary services of

workflow creation, workflow enactment, and administration and monitoring of workflow

processes [WfMC94]. There are many WFMSs in the market, which can be categorized

as following [VW97]:

• Environments that are tailored towards a specific application domain: OASIS

[M+96], ZOO [ILGP 96].

• WFMSs primarily for traditional (business-type) applications which could be used

in scientific environments, although the latter were not initially foreseen as

targets: METEOR [SKM+96], Mentor [Wod96], Mobile [BJS96], MQSeries

[IBM98], and ePERT [PEL97].

• “Workflow-aware” systems for scientific applications: LabBase [SRG94],

CRISTAL [MLK96].

We will discuss the concepts of workflow and workflow management system in

more detail in Chapter 2.

4

1.2 Collaboration

Generally speaking, collaboration is a process by which people work together on an

intellectual, academic, or practical endeavor. The collaboration can take many forms,

either traditionally, such as in person, by letter or on the phone, or electronically, such as

through email, video-conferencing or other advanced web-based collaborative

applications [L99].

In this thesis, we will discuss computer aided Electronic Collaboration.

Technology support for informal processes can be associated with a broad range of

computer based technologies. Electronic mail has been the technology with broadest

dissemination. Similarly, teleconferencing and video-conferencing have progressively

been introduced to overcome the physical limitations of inter-personal and inter-group

communication. These technologies are limited to the physical dimension of the

communication, either time such as email, or space such as the telephone or conferencing

facilities. In addition, the most relevant nature of emerging collaboration technology is

the support for particular styles of group interaction processes. Examples of this style are

consulting processes in collaborative environment, or decision processes that can be

found as the object of support in multiple GDSSs (Group Decision Support Systems)

[N+91].

Several classification types exist for collaborative technology. The basic

classification divides the possible system into four classes according to the time-space

and same-different combinations. Other aspects that have impact on the classification of

collaborative systems include size of the groups, type and structure of the groups, or

process support. We will provide more detail about collaboration in Chapter 2.

5

1.3 Description and Contribution of the Thesis

Researchers in collaborative applications and workflow systems have made progresses in

developing these two systems separately. However, there are very few WFMSs having

integrated collaborative applications. The progresses in collaborative applications, such

as video-conferencing and web-based collaboration can provide huge potential

opportunities for merging these distinct capabilities in WFMSs. Within such a system, a

process can be coordinated and collaborated in organizational activities. This system can

be sensitive to a process execution trigged by collaborative decisions, context-sensitive

information updates, and other external events.

The goal of this thesis is to expand collaboration features in WFMS according to

the workflow reference model defined by WfMC defines. We will provide an

infrastructure for collaboration both within any high-level processes and for all the

interactions and dependencies among them. The workflow system can support multiple

execution paths as an integral part of collaborative problem solving. Collaborative

applications can be invoked in a number of ways: automatically as an embedded part of a

particular activity; as a tool that is potentially beneficial for a particular task at some

specified points during the execution of a workflow process; or user-selectably on an ad-

hoc basis.

With the concept of collaboration in workflow context, we will extend METEOR

WFMS model by designing a collaboration model as the infrastructure for supporting

collaboration in the workflow system. In particular, we will discuss collaboration task

model, collaboration object structure and a general interface for workflow enactment

systems and collaborative applications. Based on the collaboration model in METEOR

WFMS, we will implement a prototype in OrbWork enactment system, a CORBA-based

workflow enactment service developed in Java language. A collaborative workflow

process is modeled as activities and tasks for people and system components participating

6

in accomplishing the work with the collaboration. We use a collaborative application --

CaTCH (Collaboration and Tele-Communication for Health) in the prototype

implementation.

In general we have made contributions to the workflow technology in

collaboration area, especially for our METEOR WFMS we

• Introduce the collaboration concept, which allows WFMSs to have support for

performing collaboration.

• Classify the collaboration types in workflow context.

• Provide an infrastructure for collaboration in workflow enactment service.

• Design a collaboration model for the workflow enactment system of METEOR

WFMS.

• Implement a prototype of the collaboration model in OrbWork enactment system

of METEOR WFMS.

1.4 Related Work

Recently good progress has been made in collaboration applications area and workflow

area. With rapid Internet development, the collaboration, especially electronic

collaboration (E-Collaboration) attracts more attentions in many industries. Participants

in the collaboration prefer to interact online at anytime from anywhere. There are a

number of projects involved in the E-Collaboration. For example, Northeast and Islands

Regional Educational Lab at Brown University has several projects related to online

collaboration for education. These projects allow the teachers to share the educational

resources and ideas with the collaboration participants all over the world [L99].

Furthermore, many companies intend to do the collaborative business with collaboration

partners online. It requires these companies to have the mission-critical collaboration

solutions for their business models.

7

Most collaborative business processes involve multiple organizations to interact

with each other. These processes require the organizations to do collaboration with each

other because different organizations may have different business modes. Such

interorganizational processes can be performed in interorganizational workflow systems.

Many research efforts have been seen on the interorganizational workflow system area.

The interorganizational workflow exceeds the individual organizational boundary and

treats every organization as a sub-domain in the whole workflow domain. The high-level

workflow process can be thought of as a virtual business process and the whole workflow

domain as a virtual enterprise [SVA99]. The workflow process goes beyond a single

enterprise boundary and is constructed by combining the services provided by different

companies collaboratively. Apparently, most interorganizational processes need to do

collaboration to communicate with partners, especially to exchange process information

among them. In addition, interorganizational workflow technology can be used for E-

business. Companies use the technology to enter new markets and meet the challenges of

global markets. The effort of entering new markets can be seen in marketSite from

CommerceOne [C99], MOPPET [ADT99], iMarkets [O98] etc. Other companies have

integrated workflow systems as a component in their products, such as most ERP systems

(e.g. SAP R/3, BaanERP, and PeopleSoft). These products support collaboration between

the workflow systems and other components. A new bred of products will appear to

dynamically create and support virtual communities of commerce partners.

The interorganizational workflow technology requires interoperability between

different WFMSs. Interoperability may require WFMSs to interact with each other to

exchange workflow information. Standards are necessary to achieve success in the

workflow interoperability area. In general, we can classify interoperability for workflow

systems into two categories. One is specifications for modeling and workflow

description, and specifications for run-time interoperability. WfMC’s Process Definition

Interchange (Interface 1) standard falls into the first category. The other is OMG’s

8

jointFlow standard [OMG98] and WfMC’s Interface 4 [WfMC94], which aim to support

exchanging process enactment information or interoperability at run-time. Similarly,

Collaborative workflows require WFMSs to interact with collaborative tools. It’s

necessary to have interface standards to integrate collaborative tools in WFMSs

seamlessly.

1.5 Organization of the Thesis

Chapter 2 describes the concept of workflow technology, workflow reference model and

concept of collaboration. Chapter 3 provides a review of METEOR WFMS’s model and

architecture that are designed by LSDIS Lab, the University of Georgia. Chapter 4

presents the detail of the collaboration model in METEOR WFMS, including

collaboration concept in workflow context and collaboration task model, collaboration

object structure and general interface. Chapter 5 has a brief introduction of OrbWork

enactment system for METEOR WFMS and CaTCH (Collaboration and Tele-Consulting

in Healthcare) application used as the collaborative application in this thesis. Chapter 6

contains the implementation detail of collaboration model in OrbWork enactment system

for METEOR WFMS. Finally Chapter 7 concludes this thesis and suggests possible

future work in this project.

9

CHAPTER 2

THE WORKFLOW MANAGEMENT SYSTEM MODEL

AND COLLABORATION

In this thesis, we need to present two concepts first. One is workflow and workflow

management system. It includes definitions of the workflow technology and workflow

reference model. The other is collaboration, collaboration types, and collaboration in the

workflow context. With these two concepts, we will introduce run-time subject-oriented

collaboration to WFMS’s run-time service.

2.1 Workflow and Workflow Management System

Workflow management is a diverse and rich technology and is now being applied over an

ever-increasing number of industries. Workflow is also a general term which may refer to

different things at different levels such as process specification and enactment at system

level, or process modeling at business process level [ED97].

In recent workflow research, there are still many definitions of workflow. In this

thesis, we use a simple and effective one that is given on the workflow management

review paper of [GHS95], the tutorial materials of [She95] and the interview of [J98]:

workflow (or workflow process) is a computer-assisted (or automated) activity involving

the coordinated execution of multiple tasks performed by different processing entities. A

task defines a logical unit of work in a workflow that related to a specific commitment,

adding value to a product or service of an organization. Workflow tasks are

heterogeneous in nature. These tasks could be manual, or automated, either

10

created specifically for the purpose of the workflow application being developed, or

possibly already existing as legacy programs. A workflow also defines task dependencies

that specify how tasks in a workflow are coordinated for execution in a semantically

correct order [KS95]. Workflow management is the automated coordination, integrated

control and communication of activities as is required to satisfy workflow process

[SGJ+96]. A WFMS is a set of tools providing support for the necessary management

service of workflow creation (which includes process definition), workflow enactment,

and administration and monitoring of workflow process [WfMC94]. WFMSs manage the

flow of activities among participants according to inter-task dependencies, and coordinate

user and system participants, together with the appropriate data resources that may be

accessible directly by the system to achieve defined objectives by possibly imposing

deadlines. The coordination also involves passing task data from participant to participant

in correct sequence, ensuring that the participants fulfill the required contributions, and

taking default actions when necessary. Although there are many commercial products in

the market claimed WFMS or workflow-enabled, we think that a WFMS must have the

following essential ingredients to classify it as a workflow automation solution (e.g.,

METEOR WFMS):

• The ability to specify and model workflow;

• The ability to coordinate and manage the execution of workflow (enactment

service);

• The ability to handle workflow exceptions;

• The ability to monitor the status of workflow process and measure the workflow

process;

• The ability to analyze, simulate and test the behavior of the workflow process.

11

The developer of a workflow application relies on tools for the specification of

the workflow process and the data that the workflow process manipulates. The

specification tool cooperates closely with the workflow repository service, which stores

workflow definitions. A workflow process is based on a formalized workflow model that

is used to capture data and control-flow between workflow tasks. A workflow enactment

service (including a workflow manager and a workflow runtime system) consists of

execution-time components that provide a execution environment for the workflow

process. A workflow runtime system is responsible for enforcing inter-task dependencies,

task scheduling, workflow data management, and for ensuring a reliable execution

environment. OrbWork is such an enactment system. Administrative and monitoring tools

are used for management of user and work group roles, defining policies (e.g., security,

authentication), audit management, process monitoring, tracking, simulation, and

reporting of data generated during workflow enactment.

2.2 Workflow Reference Model

There are now numerous workflow products available on the markets with certain

workflow capabilities. Workflow technology has been used in a wide range of application

areas such as banking, finance, insurance, healthcare, telecommunication, manufacturing,

and document management. Although the workflow technology in these areas are

successful, there is a big obstacle of wide application of the workflow technology –

standards. Almost every workflow vendor has its own workflow model, specification

language, and APIs. Every workflow product vendor has its own standard means there is

no standard in workflow area. Hence, standards are the most important factor in making

workflow pervasive. In recent years, many efforts by Workflow Management Coalition

(WfMC) have made significant progress in setting up workflow standards. In addition,

12

other standards, such as CORBA (Common Object Request Broker Architecture) from

OMG, COM from Microsoft also made a great progress on workflow technology.

In this thesis, we plan to integrate collaborative applications in WFMSs. We treat

collaborative applications as workflow client applications in WFMSs. Hence, we choose

WfMC Workflow Reference Model as the basic model. In this section, we will provide

the brief review of WfMC workflow reference model.

Figure 2.1 WfMC Workflow Reference Model

WfMC defines WFMS as a system that defines, creates and manages the

execution of workflows through the use of software, running on one or more workflow

engines which are able to interpret the workflow process definition, interact with

workflow participants and invoke the use of other tools and applications. The

standardization work of WfMC is centered on the workflow reference model (Figure 2.1).

The reference model specifies a framework for workflow systems, identifying their

characteristics, functions and interfaces. The focus has been on specifying the five APIs

Workflow API and Interchange formats

Workflow Enactment Service

Workflow
Engine(s)

Process
Definition Tools

Administration
&Monitoring

Tools

Workflow
Client

Applications

Invoked
Applications

Other Workflow
Enactment Service(s)

Workflow
Engine(s)

Interface 1

Interface 2 Interface 3

Interface 4
Interface 5

13

that surround the workflow engine. These APIs provide standard means of

communication between the workflow engines and the workflow clients (including other

workflow components such as process definition and monitoring tools). Since this thesis

will focus on workflow enactment service, workflow client applications and the interface

between them, we will present these two parts in the model. Please refer to [WfMC94]

for information of other parts.

The workflow enactment service provides a run-time environment in which

process instantiation and activation occurs, utilizing one or more workflow management

engines, responsible for interpreting and activating part, or all, of the process definition

and interacting with the external resources necessary to process the various activities. A

workflow engine provides the run time execution environment for a workflow instance in

workflow enactment service. Several functions can be handled by the workflow engine,

including interpretation of the process definition, control of process instances, navigation

between process activities, sign-on and sign-off of specific participants, identification of

workitems for user attention and an interface to support user interactions, maintenance of

workflow control data and workflow relevant data, passing workflow relevant data

to/from applications or users, an interface to invoke external applications and link any

workflow relevant data, supervisory actions for control, administration and audit

purposes.

Interaction occurs between the client application and the workflow engine through

a well-defined interface embracing the concept of a worklist – the queue of work items

assigned to a particular user (or, possibly, group of common users) by the workflow

engine. At the simplest level, the worklist is accessible to the workflow engine for the

purposes of assigning work items and to the worklist handler for the purpose of retrieving

work items for presentation to the user for processing. Activation of individual work

items from the worklist may be under the control of the workflow client application or

the end-user. A range of procedures is defined between the workflow client application

14

and the workflow enactment service to enable new items to be added to the worklist,

completed activities to be removed from the worklist, and activities to be temporarily

suspended. Application invocation may also be handled from the worklist handler, either

directly or under the control of the end-user. Client application interface (Interface 2)

provides APIs to manage the workflow worklist. It includes worklist manipulation,

process status management, process and activity control, and worklist connection and

disconnection.

2.3 Collaboration and Collaboration in WFMS Context

2.3.1 Collaboration

Collaboration is a process by which people work together on an intellectual, academic, or

practical endeavor. In the past, that has meant in person, by letter, or on the telephone

[KLP99]. In recent years, there are many ways in which groups and individuals

collaborate online. We can call them Electronic Collaboration or E-Collaboration. Also,

there are many ways to view collaboration. Considering this on a continuance based on

the degree of interaction required, the spectrum runs from contributing to resources

sharing to collaboratively designing and implementing a product such as a new tool or

closely working together in mentoring relationship. This continuance reflects the degree

to which an individual need communicate with others in the group (Figure 2.2) [L99]. We

can categorize the collaboration in four types: Resource Sharing, Open-ended Discussion,

Focused Discussion and Mentoring.

• Resource Sharing: Colleagues support each other’s work by contributing to a

shared collection of resources. The resources typically are documents, plans or

standards. Usually at this level little interaction is supported. Participants are both

invited to submit to the collection as well as extract from it.

15

• Open-ended Discussion: The range here is from resource sharing to more content

directed conversation. The interaction is typically short lived and focuses on

pragmatic matters. Colleagues engaged in the discussion with others in an area in

which participants come and go and no attempt is made to focus the group.

• Focused Discussion (Subject-oriented discussion): Colleagues here typically

participate in discussion with smaller groups of people. The content is focused on

a particular subject. This might take place as a part of an organizational workflow

process.

• Mentoring: Mentoring is a special relationship involving a high degree of

interaction. In this case one or more individuals are engaged in a relationship of

support involving a high degree of communication.

Figure 2.2 Collaboration Categories

Besides the classification described above, there is another basic classification

that divides the possible systems into four classes according to the time-space and same-

different combinations [GAP97] (Table 2.1).

Table 2.1 Basic Collaboration Classification

Same Time Different Time

Same Space In person meeting Sharing documents

Different Space Video-Conference Email, letter

Resource
Sharing

Open-ended
Discussion

Focused
Discussion Mentoring More

Interaction

16

With rapid growth in Internet development, the Electronic Collaboration area is

receiving increasing attention. E-Collaboration is a kind of collaboration that connects

individuals electronically via the Internet using tools or through access to sites on the

World Wide Web [KLP99]. The Internet-based applications allow collaboration

participants to communicate anytime, from anywhere to any place. People from different

parts of a building, state, country, or continent can exchange information, collaborate on

shared documents and ideas or work together.

E-Collaboration can have many different forms. Some of the more common

activities include the following [L99]:

• Discussion groups are focused around a subject or a specific activity, goal or

project. Some groups are open-ended, allowing users to solicit information from

each other. Other groups, more structured, may use a moderator to guide the

discussion by making comments, suggestions and connections.

• Data Collection and Organization activities use databases and search engines to

organize and retrieve data. Users contribute data individually to a shared database

and retrieve data from it when needed. Data can be in the form of reference links,

research papers, and other information formats.

• Sharing documents is involved in the collaboration, from simply displaying the

documents to having several people work on them simultaneously. Collaborators

can display documents online and discuss the content via e-mail, video-

conference or other collaborative tools. They can also use annotation systems to

comment on shared documents and editing tools to co-edit documents on line.

• Synchronous communication activities, such as Internet video-conference and

Internet chat, differ from the other types of activities in that they happen in real

time, over a short period. Video-conferencing is like a conference call with

picture online. The technologies allow users to discuss idea, debate problem,

17

consult an issue, and share information when face-to-face interaction is desired

but not possible.

• Online workshop allows the collaboration participants to learn something new

without traditionally face-to-face meetings. It allows people to participate

whenever and from wherever they want. The material for the workshop, as well as

the workshop itself can take place via a discussion group.

As almost all the types of E-Collaboration described above occur with a specific

subject, topic or goal, we can think that the E-Collaboration is subject-oriented, which is

much different from the process-oriented nature of workflows. Subject-oriented

collaboration provides a collaborative communication method or a collaborative space

that is based on one specific subject. Because it can be done at any time, form anywhere,

E-Collaboration has the ability to provide a pool of resources and professional

companions from all over the world. It also provides more opportunities for interaction

than doing face-to-face collaborative activities. Some kinds of collaboration have

asynchronous nature that allows participants to contribute to the collaboration when it’s

convenient and to reflect on what other participants have said before responding. Beyond

providing the chance to connect to other people and time to reflect on subjects of

importance, E-Collaboration can have other benefits. For example, the participants can

use more advanced technologies in the collaboration to present their ideas or information

clearly. Hence, E-Collaboration can be adopted in many areas. For instance, many

educators would like to figure out how to teach and reach students more effectively. They

will exchange their curriculum and their teaching experience among themselves and give

more prompt responses to their students’ questions and requests through E-Collaboration

methods. The E-Collaboration method used in education may save a lot of time for the

teachers and students, and provide more sharing information to them.

18

Over the last two years, a lot of collaborative applications have emerged. There

are two categories of collaborative applications in the marketplace: real-time

collaborative applications and web-based collaborative applications.

• Real-time collaborative tools are a blend of electronic whiteboard, Internet chat

and video-conference software. The collaboration process may involve

synchronous communication through video-conference, application sharing and

data sharing or instant messaging services (e.g., Microsoft’s NetMeeting or

Yahoo’s Instant Messenger).

• Web-based collaborative tools are from outgrowth of traditional GroupWare.

They are designed to provide a collaborative electronic space that can be

configured for using by the participants with/without a great deal of

administrative support. They may provide asynchronous consultation service

whereby the data is provided to the consultant. (e.g. CaTCH developed in the

LSDIS Lab, University of Georgia, Lotus’s QuickPlace)

2.3.2 Collaboration in the Workflow Context

To carry out an E-Collaboration, we need to have a collaborative environment. The

environment may be based on the individual tool, such as email, or on multiple tools. For

example, in a healthcare organization, physicians may use a workflow system to

coordinate their organizational process and use a collaborative tool to consult some cases

with other physicians out of the organization.

As described in section 2.1, workflow management system is a set of tools

providing support for the necessary services of workflow creation (which includes

process definition), workflow enactment, and administration and monitoring of workflow

processes [WfMC94]. Now we can explain two related concepts: coordination and

collaboration. Coordination is understood as a process by which the individual activities

19

of the group members become organized (in terms of inputs, outputs and scheduling). By

an external entity, this organization leads to the predefined goal in such a way.

Collaboration emphasizes the capability of self-organization of those group members,

which makes progress to the final goal through informal and mutual adjustment

[GAP97]. Based on these definitions, a workflow management system can be classified as

a coordination tool, while interaction tools for group discussion, document sharing, data

collection and synchronous or asynchronous communication can be classified as

collaboration tools.

As a commercial and coordination technology, WFMSs have undoubtedly

achieved significant success. It provides comprehensive support for organizational

activities. It can be thought as a kind of process-oriented coordination system in the

organizational domain. However, many WFMSs do not support collaboration technology

or subject-oriented discussion in the systems. But we find in many real organizations,

subject-oriented collaboration is useful. For example, a physician in a remote rural clinic

may have limited medical resources, while the other physician(s) in a health center may

have advanced and specialized high-tech healthcare facilities. In the rural clinic,

workflow system is used for its organizational process. If the physician in the remote

clinic needs to consult a particular patient’s case with the one having the advanced

healthcare facilities and having better experience, he could initiate consultation

collaboration with the experienced physician who can be in the same clinic or out of the

clinic. Hence, this collaboration may occur out of a workflow process and it’s apparently

subject-oriented. Unfortunately, within many current WFMSs, we can’t do subject-

oriented collaboration in the WFMS. They don’t support the communication with others

out of the workflow domain. If one of the participants of collaboration does not have

access to the workflow system, the collaboration can not be executed in the workflow

system. That means the workflow users can not initiate collaboration from the workflow

20

system directly. To solve the problem, we have to extend the WFMS’s functionality to

support the collaboration feature.

In the WFMS context, collaboration technology means participants of

collaboration can communicate with each other, share information, exchange ideas or

make a decision through collaborative tools between the process or beyond the WFMS

scope.

A WFMS has two major parts: design-time and run-time system. As a result, there

can be two kinds of collaboration in WFMS context: design-time collaboration and run-

time collaboration.

• Design-time collaboration takes place when several workflow designers work

together to design a workflow process. These designers may collaborate their

design work together. This kind of collaboration is mainly documents sharing

collaboration and data collection collaboration. For example, the workflow design

is stored in a central site and all designers can access the workflow design

concurrently. They need to collaborate with each other to guarantee the

consistency and operability of the design. This project won’t cover the design-

time collaboration and we will not discuss this kind collaboration any more.

• Run-time collaboration takes place when a workflow process is executing. The

collaboration is related with the workflow process, and may occur in the

workflow process optionally or arbitrarily. The collaboration in healthcare

scenario described above is such run-time collaboration. In addition, this kind of

collaboration is subject-oriented apparently, which provides a collaborative

communication method or a collaborative space that can be used for the users in

and out of the workflow domain.

We define a collaborative workflow as a workflow in which the user can perform

run-time collaboration with some collaborative applications. The difference between

21

collaborative workflows and regular workflows is that the collaborative workflows have

the collaboration functionality in coordination-nature workflow processes. Users can

perform collaboration and coordination combined in collaborative workflows by using

collaborative applications in the workflow run-time system.

For the run-time collaboration in workflow context, we define a formal syntax

specification as follows. Collaboration C in a workflow is a tuple C = (N, A, O, I), where

N is a collaboration task, A is a collaborative application, O is a set of collaboration

objects, and I is an interface between collaborative applications and WFMSs. A

collaboration task N is N = (M), where M is a set of task attributes including general and

specific attributes such as name, host, input/output data, data mapping and task

realization etc. An collaboration object CO in O is a tuple CO = (D, U, R), where D is a

set of data fields in the object, U is the URL or reference of the collaboration object

which allows workflow users to access the object, and R is the receiver(s) of the object.

The interface I in C is a tuple I = (L, E, F), where L is a collaboration notifying

mechanism, E is an extractor of collaboration object information and F is a collaboration

tool invocation the for workflow collaboration task.

The syntax model of collaboration in WFMSs describes the components of the

collaboration. We will discuss more detail about how to design the run-time collaboration

in the METEOR WFMS in Chapter 4.

2.4 Necessity for Integrating WFMS and Collaboration

We think most current WFMSs support coordination only. They can provide good

management services to business processes, such as coordinating the execution of tasks,

administrating and monitoring workflow process. Generally, WFMSs perform well in

process-oriented activities.

22

However, a significant amount of activities are related to the collaboration. In

these situations, WFMSs are unable to provide collaboration services necessarily. For

example, in a remote rural clinic with limited advanced medical facilities and medical

expertise, a physician want to schedule a consultation on a particular patient’s condition

with other physician(s) having the advanced healthcare facilities and experience. If the

WFMS in this rural clinic doesn’t support collaboration online, the physician has to talk

to other physician(s) on the phone or by other traditional means. But sometimes the

complex conditions of the patient are hard to be described in words, such as X-ray

pictures or video clips. It is better to describe it if the collaboration partner can see the X-

ray pictures or other media stuff at the same time. Here is the issue. Is it practical that the

physician takes all the record to go to other place far away from the rural clinic?

Apparently, it is impossible. Hence, if the workflow system can support the collaboration,

we can solve the problem easily. We will describe the healthcare application scenario in

detail in Chapter 4.

As analyzed above, we think integrating collaboration feature with WFMSs is

very useful. The collaborative workflow can support a lot of activities having

collaboration in nature.

In this thesis, we put our attention to the run-time collaboration, which are

subject-oriented. We will design a Collaboration Model in METEOR WFMS and

implement a prototype of the collaboration model in OrbWork enactment service for

METEOR with CaTCH (Collaborative Tele-Consulting for Healthcare) system as the

collaborative tool to present how the subject-oriented run-time collaboration is carried

out in the WFMS. From the thesis, we contribute our effort in the following areas, such

as adding a Collaboration task model in the METEOR model, introducing a method to

implement the run-time subject-oriented collaboration in the run-time system of WFMS,

integrating the collaborative tools in the WFMS and producing a general interface

between the collaborative tools and WFMSs.

23

CHAPTER 3

THE METEOR WORKFLOW MANAGEMENT SYSTEM MODEL

AND ARCHITECTURE

The objective of the original METEOR (Managing End-To-End Application) project

[KS95] at Bellcore was to facilitate and support the automation of enterprise-wide

operations (workflows) that execute on a heterogeneous, autonomous and distributed

operating environment. To achieve this objective, the original METEOR model [KS95]

offers a well-defined model and an intermediate language for specifying the workflows

and the tasks, a compiler for the language, and a run-time enactment system that provides

functionality to monitor the progress of the workflow execution, enforce the inter-task

dependencies and manage the execution of each individual task.

The new METEOR [SKM+96, WS97] workflow model developed in LSDIS

(Large Scale Distributed Information System) Lab, the University of Georgia extends the

original METEOR model in terms of both the logical model and the run-time architecture

to support large-scale multi-system workflow applications in heterogeneous and

distributed operating environments. In this thesis, we use METEOR to represent the new

METEOR workflow model developed in LSDIS LAB, the University of Georgia.

This chapter gives an overview on the basic concepts of the METEOR workflow

model and provides a brief discussion of the overall architecture of the METEOR

WFMS.

24

3.1 The METEOR Workflow Management System Model

A workflow in METEOR can be modeled as a collection of tasks, a set of inter-task

dependencies, data sets and Exceptions. In this section, we will review the basic concepts

of the METEOR workflow model, including the concepts of the METEOR task model,

the different types of inter-task dependencies to construct a workflow, data model,

exception model and the workflow intermediate language used to specify a workflow.

For briefness, we will only discuss the task model and the inter-task dependencies in this

chapter. Please see [K99] for detail of other parts of METEOR model.

3.1.1 Task Model in METEOR

A task is an operation or a sequence of operations that are submitted for execution in the

context of a workflow. It represents an abstraction of activities, which can be performed

by a variety of processing entities, depending on the nature of the task. A task can be

performed (realized) by a computer program, a database transaction, or possibly by a

network of interconnected tasks called a sub-workflow. An analogy exists between a

programming language procedure and a workflow task. Like procedures, workflow tasks

may have input/output parameters, used to transfer data in/out of the workflow task, or

possibly the whole workflow. However, unlike in procedures, a given set of input

parameters is not matched with a corresponding set of output parameters. The whole

workflow can be regarded as a single task, and may have a collection of input and output

parameter [K99].

In the METEOR model, task structures are modeled by using directed graphs

[KS95]. Figure 3.1 shows the general task model in METEOR. The nodes in the graph

represent the externally visible states of a task, while the arcs correspond to a task’s

permissible internal state transitions. An internal transition can be either controllable or

25

uncontrollable. An internal transition is said to be controllable if an enable arc outside of

the task can trigger the transition; otherwise, the internal transition is said to be

uncontrollable.

Figure 3.1 General Task Model in METEOR

One of the characteristics of the METEOR workflow model is that it provides

well-defined task structures to model heterogeneous workflow tasks in the real world.

Tasks in the general task model could be simple tasks or compound tasks. A simple task

is an atomic activity that represents an indivisible logical unit in a workflow, while a

collection of related simple tasks can be organized hierarchically to form a compound

task. Both simple tasks and compound tasks can be transactional and non-transactional in

nature [KS95].

A task may be invoked, analogously to a procedure call. A task invocation creates

a task instance, which, in case of a task being realized by a sub-workflow, creates a sub-

workflow instance. A task invocation specifies a number of input parameters that must be

supplied for a proper task realization. Some parameters of an invocation may have

defined default values. Such parameters are called optional parameters. Non-optional

parameters are called required parameters. Each task must have at least one invocation.

Initial

Executing

Failed Done

start

fail

Non-Transactional Task

Initial

Executing

Aborted Committed

start

abort commit

Transactional Task

Uncontrollable Transition

Controllable Transition

26

Tasks with multiple invocations are permitted. Note that a task with multiple invocations

is analogous to an overloaded procedure. A task invocation may have no parameters at

all. In this case, it is analogous to a procedure with no parameters.

A task instance terminates when its realization terminates. A task realization

either succeeds or fails, which is then reflected by the task entering its success final state

(either Done or Committed) or its failure final state (either Fail or Abort). A task may

enter its failure state due to a failure of its realization, which is described by a suitable

exception object. In this case, the task is said to throw this exception.

3.1.2 Designing Networks (Maps)

A network represents the core of the workflow activity specification. It is a collection of

tasks and transitions, which represents a sub-workflow (or possibly the whole workflow,

i.e. the network of the topmost task). Since a network is one type of the realization, it is

always associated with some task, called its parent task. A single network defines a

relationship among workflow tasks, transferred data, exception handling, and roles.

A network has one or more start tasks and one or more final tasks. Each final task

must specify if the network succeeds or fails once the task terminates. If a final task

specifies that the whole network fails, it must indicate which exception should be thrown

as the result of the failure.

3.1.2.1 Transition

A transition joins two tasks and represents a transfer of activity in the workflow from the

source task to the destination task. Precisely, the transition joins one of the final states in

the source task with the initial state of the destination task. An external transition is a

27

special type of a transition, in which the two participating tasks (source and destination)

are not in the same workflow. An implied external transition leads to a start task of the

network. Similarly, an implied transition leads from the final task, and is used to notify

the external entity that the network has terminated. External transitions are also used to

specify synchronization points with some external events. Typically, external transitions

may be used to specify communication and synchronization between two independent

workflows.

A transition may have an associated set of data classes that are shipped along with

the transition when it is activated. Additionally, each transition has an associated Boolean

condition. The transition may be activated only if the condition is true in the run-time.

The classes that are associated with an input transition to a task are called the task’s input

classes, and those appearing on an output transition are called output classes of that task.

A task’s output class, which is not its input class, is created by the task. An object

instance of the specified class is created by the workflow run-time enactment system. A

task’s input class, which is not its output class, is dropped. For each task, a mapping from

the input classes of a task to the required parameters of one of its invocations must be

defined. Similarly, a mapping from output to the output classes must be defined too.

A group of input transitions is called an AND-join if all of the participating

transitions must be activated for the task to be enabled for realization. An AND-join is

called enabled if all of its transitions have been activated.

A group of input transitions is called an OR-join if one of the participating

transitions is activated for the task to be enabled for realization. An OR-join is called

enabled if one of its transitions has been activated.

A group of transitions are said to have a common source if they have the same

source task and all lead either from:

• its success state, or

• its fail state with the same thrown exception.

28

A group of common source transitions may form AND-split, OR-split, loop or

fork. A group of common source transition is called an AND-split if each of the

transitions in the group has the condition set to true. It means that all of the transitions in

the group are activated when the task completes. Note that an AND-split creates parallel

paths (executed in parallel by a workflow instance).

A group of common source transitions called an OR-split is an ordered list of

transitions where all but the last transition may have arbitrary conditions. The last

transition on the list has the condition set to true. An OR-split may be associated with a

task’s failure state. In this case, the condition of the last transition does not have to be set

to true and if none of the conditions is satisfied, the whole network terminates with

failure, and its parent task enter its failure state with the same exception.

A loop is a special case of an OR-split, where the list is composed of exactly two

transitions. A loop requires that all of the paths beginning with one of the transitions and

none of the paths beginning with the other transition cycle back to the source task. Note

that if a loop has both transitions set to true, the second transition is useless. Such a loop

is infinite.

A fork is an ordered list of common source transitions in which the first transition

has the condition set to true, and the remaining transitions may have arbitrary conditions.

The semantics of a fork is as follows. Once the source task completes, every transition in

fork, for which the condition is evaluated to true, is activated. The first activated

transition is the continuation of the original workflow instance, from now on called the

parent instance. Any other activated transition forks off (spawns) a new workflow

instance, called the child instance. Each child instance is considered identical to its parent

up the point of the fork. A transition originating a child instance receives copies of the

data objects. Original objects are only available to the parent instance.

29

3.2 The METEOR Workflow Management System Architecture

METEOR’s architecture includes a collection of four services and tools, implemented as

separate modules. Collectively, they are called EAppS (METEOR Enterprise Application

Suite of tools and services). The four components are EApp Builder,

EApp Repository, EApp Enactment, and EApp Manager. EApp Enactment

includes services: OrbWork and WebWork. Both OrbWork and WebWork use a fully

distributed open architecture. OrbWork is better suited for more demanding, mission-

critical enterprise applications requiring high scalability, robustness and dynamic

modifications. Figure 3.2 shows the overall architecture of METEOR WFMS [KSM99].

Figure 3.2 METEOR Architecture

3.2.1 Workflow Builder Service

The METEOR graphical designer is used to develop a workflow application, in some

cases leaving no extra work after a designed workflow is converted to a workflow

application by the runtime code generator. This service has three main components used

Workflow
Designer

Workflow
Repository

Design Services

WEBWork
Workflow

Engine

Workflow
Translator/
Generator

ORBWork
Workflow

Engine Enactment Service

Repository Service

30

to specify the entire map of the workflow, data objects manipulated by the workflow, as

well as the details of task invocation, respectively. This service has the capability to

model complex and varied tasks in a high-level concept and easy to use the manner that

shields the designer of the workflow from the underlying details of the infrastructure or

the runtime environment. It also provides the user very few restrictions regarding the

specification of the workflow. The designer assumes no particular implementation of the

workflow enactment service. Its independence from the runtime supports separating the

workflow definition from the enactment service on which it will ultimately be installed

and used. Workflow process definitions can be stored in the workflow repository

managed by the METEOR repository service.

3.2.2 Workflow Repository Service

A workflow repository is a database of information about workflow processes, data,

organizations and other perspectives of workflow design such as task realizations,

communication protocols, external applications, and resource interfaces. Storing

workflow design information in a repository brings the advantages of having repository

functions such as versioning, lifecycle management, querying of objects, and sharing the

design information between various tools. The METEOR Repository Service is

responsible for maintaining information about workflow definitions and associated

workflow applications. The workflow designer, which use the graphical workflow design

tool, communicates with the repository service and retrieves, updates, and stores

workflow definitions. Although workflow processes within different enterprises have

common elements, they are typically designed from scratch. Using a common workflow

repository or transforming design information between repositories, workflow design

information can be shared within an enterprise or between different enterprises, thus

providing a basis for common understanding and shared business intelligence.

31

The workflow repository will play a central role in the METEOR WFMS

architecture. Workflow design information provided by the workflow designer developed

by NRL and LSDIS Lab, the University of Georgia and possible other design tools (such

as other workflow or enterprise design tools, or a specialized tool for enterprise

organizational modeling) will be stored in the repository. These tools can share or reuse

the design information by interacting with the repository. Currently, METEOR’s two run-

time systems, namely OrbWork and WebWork need workflow specification files in

special formats to use in their internal processing. Therefore, workflow design

information in the repository needs to be transformed into these formats. Other

supportive tools, such as a monitoring tool, a browsing tool (to navigate and query the

objects in the repository), and an administrative tool will also benefit from repository

functions.

3.2.3 Workflow Enactment and Manager Service

The function of the enactment service is to provide execution environment for processing

and monitoring workflow instances and administering available workflows. At present,

METEOR provides two enactment services: OrbWork, discussed later in this paper, and

WebWork. Each of the two enactment services has a suitable code generator that can be

used to build workflow applications. In the case of OrbWork, the code generator outputs

specification files for task schedulers, including task routing information, task invocation

details, data object access information, user interface templates, and other necessary data.

The code generator also outputs the code necessary to maintain and manipulate data

objects, created by the data designer. The task invocation details are used to create the

corresponding “wrapper” code for incorporating legacy applications with relative ease.

We will discuss more detail about OrbWork enactment service in Chapter 5.

32

CHAPTER 4

COLLABORATION MODEL IN

METEOR WORKFLOW MANAGEMENT SYSTEM

In this chapter, we will introduce our collaboration model to WFMSs, including the

collaboration object structure and general interface between WFMSs and collaborative

tools based on the healthcare scenario. Before we present our collaboration model to

WFMSs, we give a healthcare application scenario in the workflow system with

collaboration

4.1 An Application Scenario with Collaboration

In order to understand the requirement of the run-time subject-oriented collaboration in

the METEOR WFMSs, let us think about an example scenario in the healthcare area.

Suppose collaboration takes place between physicians in different locations at anytime.

The physicians are collaboration partners. Figure 4.1 briefly shows the structure of the

healthcare collaboration scenario. A physician in a remote rural clinic with limited

medical resources is the user of a workflow process in the remote clinic. Sometimes, a

patient’s condition is more complicated and the physician is not able to handle it within

the rural clinic with its limited resources or the physician does not have much experience

with the patient’s condition. Hence, he probably has to consult it with one or several

physicians in other health centers with advanced high-tech healthcare facilities. In order

to do consultation, patient information is bundled as a collaboration object and stored in a

web accessible repository, and the collaboration partner accesses the patient information

33

to provide his professional comments. In this case, the consultation is out of the workflow

process itself because one of the participants may not be in the remote clinic. And the

collaboration object can be passed through the tasks in the workflow process. Because the

current METEOR WFMS does not support this kind of collaboration, we need to

introduce a collaboration model to the workflow system to make the collaboration with

other outside participants executable.

Figure 4.1 Healthcare Collaboration Scenario

A typical medical scenario would involve a physician to initiate collaboration and

create a collaboration object for his patient. The collaboration object in this case is

basically a “view” of the patient’s current condition and problems. It would typically

contain information regarding the patient’s medical history, allergies, symptoms, possible

cause etc. Each collaboration object would encode patient information, such as video

clips, images, X-rays database views, lab reports and possibly audio commentary from

the physician about the case. There will be no limit on the amount of information to be

packed.

Remote Rural Clinic
Advanced, Specialized

Healthcare Center

Data Acquisition Composite Patient
Portfolio

Distributed Data Repository

Internet

Internet Browser

Collaborating Parties

34

After the collaboration object is created, it is then “shipped” over the Internet to a

physician who can view all the components of the object. The receiver physician then

responds back to the consulting physician using a similar approach. Thus a collaboration

object moves back and forth between the various collaboration partners till a acceptable

result is obtained.

In this scenario, the collaboration optionally depends on the patient’s condition

because we can not foresee the collaboration task will occur definitely when we design

the workflow process for the remote clinic. We will discuss the two modes of the

collaboration task in the METEOR system. In addition, the collaboration happens out of

the workflow process and involves participants in and out of the workflow process.

Besides above requirements, the collaboration also needs interaction with the workflow

process.

Figure 4.2 displays the basic architecture of a simple healthcare workflow with

collaboration in the remote clinic using the task map of the workflow process. In a

normal case, when a patient goes to the remote clinic, a nurse will do the registration for

him and record the appearance symptom. This is done by the PatientRegister task

(Human task). Then he has to do some medical tests and lab tests first, which is done by

the MedicalTest task (Non-Transactional task). Meanwhile, the patient’s medical history

is retrieved by the RetrieveData task (Transactional task). When the test reports and the

patient’s medical history are available, the physician will analyze the patient’s symptom.

Here we have an optional collaboration for analyzing symptom task. In

CollabDecision_AnalyzeSymptom task (Human task), the physician reviews the symptom

first. If he feels the patient’s condition is quite complex and he can’t handle it perfectly,

he will decide to initiate a subject-oriented collaboration with other physician who has

more advanced healthcare facilities or more experience. Otherwise, he will go to

Analyze_MedicalReport task (Human task) directly from the decision task, skipping the

35

collaboration task. If he decides to do the collaboration, the AnalyzeSymptom task, which

is a Collaboration task, is executed.

Figure 4.2 Simple Healthcare Workflow with Collaboration

The collaboration has been initiated and there is interaction between the

participants of the collaboration. After the collaboration is done, the workflow instance

will go to next task, Analyze_MedicalReport task (Human task). After analyzing the

symptom and medical report, the physician will decide a solution to patient’s condition.

Here is another optional collaboration task. In the CollabDecision_GenerateSolution

task, if the physician is not quite sure that the solution he has is correct, he will decide to

initiate another subject-based collaboration with some physicians who have more

Data Repository

Composite Patient
Portfolio

(Collaboration Object)

Inside Workflow

Outside workflow

Collaboration partner

36

experience or more advanced healthcare facilities, which is done in GenerateSolution

task (Collaboration task). Otherwise, he will go to WritePrescription task (Human task)

directly. Note that this collaboration in this task is not related to the collaboration in

analyzing symptom task. After the collaboration is completed, the WritePrescription task

is executed. Then the billing information is generated, which is done in Billing task (Non-

Transactional task). Finally, all the data, including medical report, solution, prescription

and billing information, is stored to the database in the remote clinic.

From the healthcare scenario, we know each workflow instance may not have

collaboration, or may have collaboration once or twice. All of the collaboration is

subject-oriented, that means their subjects in the collaboration are independent. The data

objects in the collaboration can be shared with other tasks in the process. The participants

of the collaboration may be from one or more organizations, which makes the

collaboration cross the organizations’ domain. Executing collaboration across

organizations’ domain is a little complicated because these organizations may have

heterogeneous systems. We think that the collaboration occurring in one organization is

easier than that occurring among several organizations. But in general, the intra-

organization collaboration is a special case of the inter-organizational collaboration. We

will implement the inter-organizational collaboration in this thesis.

 4.2 Collaboration Task Model

In the METEOR WFMS, the run-time subject-oriented collaboration occurs when the

user of the workflow instance decides to collaborate with other people about a specific

subject in or out of the workflow system using a kind of collaborative tool independent of

the WFMS. To represent the activity of the collaboration in the METEOR system, we

need to add one more task type, named Collaboration task.

37

In the current MEREOR workflow system, it has four basic task types except

Collaboration task: Human task, Transactional task, Non-Transactional task and

Network task. A workflow process, which is designed via METEOR workflow designer

tool, consists the combination of these task types. The design mode for the collaboration

task is different from that for the other four basic tasks. At the design-time, we may not

foresee the situation in the run-time totally. For collaboration, we are not sure it will take

place definitely at run-time. What we know is the possibility of a task that may generate

collaboration. In this case, the collaboration is optional. For example, in our healthcare

scenario, the decision for the collaboration of analyzing symptom is made at the run-time

based on the condition of the patient. With the uncertainty at the design-time, we can use

optional collaboration task mode in the designer. This task provides the run-time user a

method to perform the collaboration with other people when necessary. Due to the

uncertainty of performing the collaboration task, there should be a task to make the

decision on whether it will occur directly before the collaboration task. This decision task

has a condition value to make an OR split for its outgoing arcs. One is to the

collaboration task; the other is to the task(s) directly after the collaboration task.

Meanwhile, the task(s) directly after the collaboration task should have an OR-join for its

incoming arcs. Figure 4.3 shows how the optional collaboration task is normally designed

in the METEOR’s designer.

Figure4.3 Optional Collaboration task design mode

Out

In
OR

ORCollab_Decision
Task

Collaboration
Task

After_Collab
Task(s)

38

If we foresee that the collaboration task will occur at the run-time definitely, we

can design the workflow process with an absolute collaboration task. We call this kind of

collaboration is absolute. Figure 4.4 shows how the absolute collaboration task is

designed in the METEOR’s designer. This mode is the same as the mode in other basic

tasks.

Figure 4.4 Absolute Collaboration task design mode

Having understood the requirements of the run-time subject-oriented

collaboration in METEOR WFMS, we conclude that the collaboration task in workflow

process has its special features as well as the general features of all the task types. Figure

4.5 shows the run-time status of the collaboration task.

Figure 4.5 Status model of Collaboration task

The top level of status model in collaboration task is the same as the other task

types in METEOR system. It has Start, Execute, Done and Fail states. But in Execute

OutIn
Collaboration
Task

Start

Exec

Done Fail

Init
Collab

Wait for
Reply

Collab
Starts

Start

Done Fail

No Reply

Collab Fails

Collab
Terminates

Equals

39

state, it has two stages: Initiate Collaboration state and Wait for Reply state. After the

Start state, the task is in Initiate Collaboration state, which initiates a subject-oriented

collaboration in the run-time. The initiation of collaboration includes invoking the

collaborative tool and generating the collaboration object. If the collaboration is initiated

successfully, it goes to Wait for Reply state to wait for the reply from the partner of the

collaboration. If the collaboration is not initiated successfully, such as the collaborative

tool can’t be invoked, it leaves the Execute state and goes to Fail state directly. In the

Wait for Reply state, there are two outgoing directions too. One is successful direction to

Done state, which means that the collaboration is completed. The other direction is to

Fail state, which means the collaboration can’t be finished successfully, such as no reply

in a reasonable duration.

In METEOR WFMS, each task type has its own special attributes besides the

general attributes. The following attributes are for each task type:

• Name: Name of the task.

• Type: Type of the task. (Collaboration, Human, Transactional…)

• Security assignment: ACL (Access Control List) list for the task. It defines which

object the task has rights to access.

• Host: The name of a host that the task resides on.

• A set of invocations, where each invocation has a name and a list of input

parameters (Each parameter has name, type, and optionally default value). An

invocation can be thought as an input parameter.

• Output parameters: Each parameter has name and type

• A list of thrown exceptions

• Absolute constrains: they include temporal, access, and condition on inputs.

• Short description (annotation): it briefly describes what the task should do.

• Task realization (implementation): it provides the task implementation.

40

A task may be realized by various means. For example, it may be accomplished

by running a computer program, or by a human. A more complex task may have to be

realized by a sub-workflow of other tasks. Specific task type realizations introduce

additional attributes. Task realization with collaboration task form a hierarchy, as shown

in Figure 4.6. A task realization may be either non-transactional, transactional, or

workflow. For more detail, please refer to the METEOR system model in Chapter 3.

Figure 4.6 Task realization hierarchy

Besides the general attributes and realizations for all task types, the Collaboration

task has its own special attributes. The realization is performed by people participating in

the collaboration using the collaborative tool. The realization terminates after the user in

the workflow instance gets the reply from the collaboration partner. Additional attributes

for the task include:

• HTML forms: these HTML forms display the input parameters of the task and the

links to the collaborative tool.

• Mapping of input/output parameters to form fields

• Collaborative tool name (type): this attribute tells METEOR system which

collaborative tool will be used in this task.

Realization

Non-Transactional Workflow Transactional

Human Collaboration Composite Open 2PC

41

• Collaborative tool invocation: this field gives METEOR run-time system a

method to invoke the collaborative tool. It can be a link or a button to invoke the

tool to initiate the collaboration. This attribute may have the location of the server

of the collaborative tool and the file type the tool accepts.

• Collaboration object structure: this attribute gives METEOR system a data

structure that describes the collaboration object. The detail information will be

discussed in the next section.

After integrating the Collaboration task model in the METEOR WFMS model, we

can have run-time subject-oriented collaboration when the workflow instance is executed.

The collaboration task model should be implemented in both design-time system and run-

time system, such as some special attributes should be given in the design-time, which

requires that the design tool has the GUI to allow the designer to give these attributes’

values, and the two stages of the execution of the task should implemented in the run-

time system. We will discuss the detail about the implementation in the later chapter.

4.3 Collaboration Object Structure

In the Collaboration task, the collaborative tool may create the collaboration object for

the collaboration. The object may be stored in a repository out of the organization of the

workflow process. The workflow process needs to get the object itself or the reference of

the object from the collaborative tool and sometimes needs to pass it to other tasks in the

workflow process. In the current METEOR WFMS, there is a data designer to design the

normal workflow data object that can be transported through the workflow process. We

can treat the collaboration object as a separate part of the normal data object. Based on

the normal data object structure and data designer, we can design the collaboration object

42

similarly. The collaboration object structure (Figure 4.7) will have the following

attributes:

• Collaboration object structure name: Name of collaboration object structure. In

general, one type of collaboration object structure for one collaborative tool.

• Collaboration object data type: this data type is similar with the normal data type.

It includes all the data fields in the data object. One data field has the field name,

field type and field value.

• Collaboration object data URL/reference: Through the collaboration object data

URL/reference, the workflow user can retrieve and review the collaboration

object

• Role/Name of the receiver of the collaboration object (optional): the attribute

specifies who can access the collaboration object in the workflow process.

Figure 4.7 Collaboration object structure

The collaboration object structure for one collaborative tool can be specified in

the workflow designer. Different collaborative tools may have different collaboration

object structure. When we design a workflow process using the workflow designer, we

need to decide which collaborative tool will be used in the run-time if there is

collaboration in the workflow process. According to the collaborative tool, we should

design the specific collaboration object structure. In the METEOR, the run-time system

Has

1 m

Name

Type

 Value

Data Field

Data Type

Name

URL/Reference

Receiver (optional)

Collaboration
Object Structure

43

will generate the collaboration object dynamically according to the collaboration object

structure in the designer. The collaboration object may be transported in the workflow

process and can be accessed by some users in some tasks. In order to achieve the security

feature, we just use the security mechanism in METEOR system for normal data object

(assign the ACL to the collaboration object in the task). For more detail, please refer to

the OrbWork information in the Chapter 5. Figure 4.8 shows how the collaboration object

is transported in the workflow process. In Task1, after it finishes the collaboration, the

task generates the collaboration object and the collaboration object URL/Reference and

passes it to next task(s) with the normal data object. Task2 and Task3 are not allowed to

access the collaboration object and its URL/Reference. This can be achieved by the ACL

security mechanism, which means the access right of the collaboration object is not

assigned to the tasks. But, Task4 has the access right of the collaboration object and it can

retrieve and review the collaboration object itself or through the URL/Reference.

Figure 4.8 Collaboration object transported in the workflow process

Collab.
Object Collab

object
Repository

Task1

Task2

Task3

Task4

Collab Object /URL
Normal data

Not allowed
accessing the
collab. Object

Inside workflow

Outside workflow

44

4.4 General Interface between METEOR and Collaborative Tools

In order to have a run-time subject-oriented collaboration in the workflow process

efficiently, it’s better that we can integrate the collaborative tool with the WFMS

seamlessly and make the communication between the WFMS and collaborative tool

smooth. It requires us to have an interface between the WFMS and the collaborative tool.

Our intention in this project is to make the collaboration task model suit for different

collaborative tools that can be used in WFMS. Hence, it’s ideal that the interface is suit

for all collaborative tools. However, in the real world, the collaborative tools are

heterogeneous systems. That means different collaborative tools have different

architectures, models, implementations and data objects etc. It’s hard to design a suit-for-

all interface between the WFMS and all possible collaboration systems. What we can do

with this issue is to abstract general features of the interface for as many as possible

collaborative tools. Based on the general features, we can design the interface between

the WFMS and collaborative tools as general as possible.

Let’s discuss what functions the general interface can provide? Figure 4.9 shows

the relationship among the workflow run-time system, general interface and the

collaborative tool. First, the interface should have a method to invoke the appropriate

collaborative tool that is defined in the collaboration task in the workflow designer. The

method can be either static or dynamic. For dynamic invocation, we can pre-set the

invocation method in the system independent of the WFMS. For example, we can have a

new file type associate with the new collaborative tools. When we want to have

collaboration in the workflow process, we just make the WFMS or the interface to deal

with the file type, and the system (such as Windows) can invoke the collaborative tool

automatically. The file type for the collaborative tool can be given in the workflow

designer after it’s registered in the system. For static invocation, we should describe how

to invoke the collaborative tool in the interface. For example, we can write a script file to

45

invoke the tool. When having collaboration, we just execute this script file to invoke the

collaborative tool. In our opinion, the dynamic invocation is more flexible and easier to

be implemented, because there is no need to write the script file for every collaborative

tool, instead we just register the file type for it in the system. If the system doesn’t

support the dynamic invocation, we have to use static invocation.

Second, after the collaboration object is created by the collaborative tool, the

object may be transported in the workflow process, which requires the WFMS’s run-time

system has to know some collaboration information, such as the collaboration object’s

URL/Reference for accessing or the receiver of the collaboration object (optional). The

information could be extracted from the collaboration object structure. So the interface

should have extractor functionality.

Figure 4.9 Relationship among Workflow run-time system, General interface and

Collaborative tool

Third, the collaboration has the interaction among the participants of the

collaboration. One of the participants is in the workflow process. How do we notify the

user in the workflow system when there is collaboration reply waiting for him? From this

point, the interface should have a notifying mechanism to notify the user in the workflow

Workflow Run-
time engine

Collaboration
Interface

Collaborative
Tool

Collab. Notifying Mechanism

Extractor of Collab. Object info
from Collab. Object Structure

Collab tool invocation
from WF Task

Functionality

46

process. With our research, we feel that this notifying mechanism in the interface

between WFMS and the collaborative tool is quite complicated. The notifying

mechanism is dependent on the collaborative tools based on the tools’ architectures,

models and data schemas etc. We can choose one of the two mechanisms to implement

it. One is that the interface provides a general module of the notifier. We can think this

module is a template having abstract information. For every collaborative tool, we need

to customize it within the collaborative tool domain and add some extra information to it.

The other is that the interface provides some standard APIs to WFMSs and collaborative

tools. Through calling the APIs in the WFMSs and collaborative tools, the interface can

connect these two systems to communicate. In this thesis, we choose the first one,

module of the notifier, to implement the notifying mechanism. For more information of

the implementation, please refer to the implementation in Chapter 6.

47

CHAPTER 5

ORBWORK ENACTMENT SERVICE FOR METEOR WFMS

AND CATCH COLLABORATIVE APPLICATION

METEOR WFMS needs to deal with heterogeneity of platforms within and across

cooperating enterprise along with legacy applications and data. Meanwhile, there is

increasing demand for advanced feature for supporting mission-critical processes.

OrbWork Enactment System for METEOR WFMS, implemented by LSDIS Lab, the

University of Georgia, is a CORBA-Based fully distributed, scalable and dynamic

workflow runtime system for METEOR WFMS.

CaTCH (Collaboration and Tele-Communication for Healthcare) is an Internet

based tele-collaoboration system developed at the LSDIS Lab, the University of Georgia.

Its key technical focus is on seamless integration of complementary component

technologies and tools to improve the quality of healthcare service. Although the original

objective is to improve the quality of healthcare service, CaTCH can be used in other

organizations for collaboration. In this thesis, we will integrate CaTCH in OrbWork

enactment service for general-purpose METEOR WFMS.

In this chapter, first we provide the overview of OrbWork enactment service for

METEOR WFMS. Then we provide the overview of CaTCH system.

5.1 OrbWork Enactment Service for METEOR

The current version of OrbWork, the one of the two implementations of the METEOR

workflow management system EAppa Enactment service, has been designed to address

48

a variety of shortcomings found in today’s workflow systems by supporting the following

capabilities:

• provide an enactment system capable of supporting dynamic workflows,

• allow significant scalability of the enactment service,

• integrate disparate distributed and heterogeneous computing environments within

and across enterprises,

• utilize open standards, such as CORBA due to its emergence as an infrastructure

of choice for developing distributed object-based, interoperable software,

• support workflow interoperability standards, such as JFLOW [OMG98] ,

• utilize Java for portability and network accessibility,

• provide enterprise application and data integration capability in the context of

process management,

• provide a user interface via standard Web browsers, for both the workflow end-

users and the workflow administrators.

5.1.1 Enactment System of OrbWork

OrbWork provides a fully distributed, scalable enactment system for the METEOR

workflow management system. The enactment system has been implemented to support

workflows in heterogeneous, autonomous and distributed (HAD) systems. It utilizes the

World Wide Web in providing a consistent interface to end-users and workflow

administrators from commonly available Web browsers, and also utilizes the

HTTP/HTTPS protocol for distribution of task definitions and task routing information.

49

5.1.1.1 OrbWork Architecture

The architecture of OrbWork enactment system includes the scheduler, workflow

specification repository, workflow manager, and the monitor. Figure 5.1 shows an

overview of the OrbWork system organization [KSM99].

Figure 5.1 OrbWork System Organization

The scheduler accesses workflow specifications through the HTTP/HTTPS

protocol, directly from the repository. The difference of the scheduler between using

HTTP protocol and using HTTPS protocol is the scheduler with HTTPS protocol

supports security mechanism in the OrbWork enactment system. The monitor records all

of the events for all of the workflows being processed by the enactment service. It

provides a user interface for the workflow administrator, who can access the information

about all of the current workflow instances. The workflow manager is used to install new

workflow processes (schemas), modify the existing processes, and keep track of the

TASK
Scheduler

TASK
Scheduler

TASK
Manager

TASK

WEB WR

WDE

TASK
Scheduler

TASK
Manager

TASK

...

Workflow scheduler

ORBWork
Manager

Meteor
Monitor

50

activities of the scheduler. The workflow administrator, using the available interface,

controls the existing workflows as well as controls the structure of the scheduler. The

structure of the scheduler can be altered by adding more resources, or by migrating

fragments of the scheduler to other hosts, for example with lower processing loads. Some

schedulers may be replicated, in case the load of workflow instances is too high for a host

running just a single scheduler.

OrbWork’s scheduler is composed of a number of small schedulers, each of

which is responsible for controlling the flow of workflow instances through a single task.

The individual schedulers are called task schedulers. In this way, OrbWork implements a

fully distributed scheduler in that all of the scheduling functions are spread among the

participating task schedulers that are responsible for scheduling individual tasks. In this

sense, the OrbWork scheduler is composed of a network of cooperating task schedulers.

Each task scheduler controls the scheduling of the associated task for all of the workflow

instances “flowing” through the task. Each task scheduler maintains the necessary task

routing information and task invocation details [KSM99].

As a workflow instance progresses through its execution, individual task

schedulers create appropriate task managers that oversee execution of associated tasks.

Each workflow instance receives its own task manager, unless the task has been designed

to have a worklist, in which case all of the instances are processed by the same task

manager.

A workflow is installed by first creating an appropriate workflow context in the

Naming Service. (The context is used for storing the object references for all of the

participating components.) Then the installation continues by activating and configuring

all of the necessary task schedulers and registering them with the Naming Service. All of

the component task managers are also registered with the Interface Repository of the

underlying ORB.

51

5.1.1.2 OrbWork Scheduler

OrbWork utilizes a fully distributed scheduler in that the scheduling responsibilities are

shared among a number of participating task schedulers, according to the designed

workflow map. Each task scheduler receives the scheduling specifications at startup from

the Workflow Repository (currently, the repository service sends the specifications via

the HTTP/HTTPS protocol). Each set of task specifications includes the input

dependency (input transitions), output transitions with associated conditions, and data

objects sent into and out of the task. In case of the human task (performed directly by

end-users), the specifications include HTML templates of the end-user interface page(s).

In case of a collaboration task (performed by end-user with collaborative applications),

the specifications include HTML templates of the end-user interface page(s) and the

detail of its collaboration object structure and the notification template. In case of a non-

transactional automatic task (typically performed by a computer program), the

specifications also include a task description and the details of its invocation. Finally, in

case of a transactional task, the specification includes the details of accessing the desired

database and the database query.

When a task is ready to execute, a task scheduler activates an associated task

manager. The task manager oversees the execution of the task itself. Figure 5.2 presents

a view of the OrbWork’s distributed scheduler [KSM99]. Note that scheduling

components and the associated tasks and task managers are distributed among four

different hosts. The assignment of these components to hosts can be modified at run-time

by the workflow administrator.

The partitioning of various components (scheduler’s layout), including task

schedulers, task managers and tasks, among the participating hosts is flexible. An

OrbWork administrator may move any of the components from one host to another. In

52

the fully distributed layout, it is possible to place all of the workflow components on

different hosts.

Figure 5.2 OrbWork’s Distributed Scheduler

Each task scheduler provides a well-constrained subset of the HTTP/HTTPS

protocol, and thus implements a lightweight, local Web server. This enables an OrbWork

administrator to interact directly with a selected task scheduler and modify its scheduling

specifications from a common Web browser. It also enables the end-user to access

workflow instances residing on the task’s worklist and collaboration worklist. This set up

naturally supports a mobile user.

5.1.2 OrbWork Implementation

One of the most important considerations while designing the OrbWork workflow

management system is its flexible and easily modifiable distributed architecture. The

TASK
Scheduler

TASK
Scheduler

TASK
Scheduler

TASK
Scheduler

TASK
Scheduler

TASK
Manager

TASK
Manager

TASK
Manager

TASK TASK

TASK
HOST 1

HOST 2

HOST 3

HOST 4

53

current version of the system has been implemented in Java and OrbixWeb 3.2, Iona’s

CORBA system with Java binding. In addition, Iona’s Naming Service has been utilized

as a way of providing location transparency for all of the OrbWork components. Using

CORBA, and especially Iona’s OrbixWeb and Naming Service, as the underlying

middleware system offers a number of advantages for implementing a distributed

workflow enactment system. In addition to the obvious features provided by CORBA,

OrbWork relies on a number of specific services that proved extremely useful in

implementing OrbWork. The following table summarizes the features used [KSM99].

Table 5.1 CORBA/Orbix Feature Used in OrbWork

Feature Application
Dynamic Object Activation Allows for automatic activation and deactivation of OrbWork components,

reducing the load on the host system(s)
Dynamic Invocation
Interface (DII)

Only object references are transferred; data object are accessed dynamically,
according to their interfaces

Object Loaders Data objects, task schedulers, and other OrbWork components use loaders to
automatically save/restore state

Naming Service Task schedulers are located with the use of the Name Service; this allows for
flexible and transparent placement of the schedulers and their possible migration
at runtime

All of the OrbWork components are implemented as CORBA objects. OrbWork

relies on the Orbix Activator to start the necessary server when its functions are necessary

for the activities of the distributed scheduler and also shutdown the servers once no

services have been requested within a specified time interval. In this way, certain portions

of a large, distributed workflow (for example those less frequently used) may become

inactive, reducing the overhead on the host systems to the necessary minimum.

The implementation detail of collaboration model in OrbWork enactment service

will be presented in Chapter 6.

54

5.1.2.1 Task Schedulers

A task scheduler is implemented as a CORBA object. The IDL interface presented to

clients (other task schedulers and other OrbWork components) enables them to invoke

various scheduling functions according to the currently loaded specifications. The

interface also enables dynamic modifications of the scheduling specifications by

reloading from the specification server (repository) or by a direct modification of the

specification within the task scheduler.

A task scheduler relies on OrbixWeb Name Service to locate its successors. This

enables the OrbWork administrator to dynamically reconfigure the runtime layout of the

scheduler by shifting some components between hosts, without introducing any changes

to the remaining task schedulers, or workflow instances administered by them.

OrbWork uses the object loader capability supported by OrbixWeb to save/restore

the state of a task scheduler. The state includes the necessary information about

forthcoming instances (those with still unfulfilled input dependency) and those already on

the worklist. As the CORBA object representing a task scheduler is activated (because

one of its task predecessors attempts a transfer of the next workflow instance), the

necessary scheduling data is automatically reloaded.

5.1.2.2 Task Managers

Task managers control execution of all tasks except human tasks and collaboration tasks

(human tasks and collaboration tasks have no associated task managers). Depending on

the task type, a task manager is classified as non-transactional or transactional, and is

implemented as a CORBA object. A task manager’s IDL interface allows it to be invoked

by the corresponding task scheduler. Once activated, the task manager stays active until

the task itself completes or generates an exception. Once the task has completed or

55

terminated prematurely with a fault, the task manager notifies its task scheduler. The task

scheduler then continues the flow of the workflow instance.

Orbix Activator automatically activates the task manager, only when needed. The

communication between the task scheduler and the associated task manager is

accomplished by asynchronous (one way) method calls.

A transactional task manager uses JDBC to access the requested data source.

Currently, OrbWork provides specific task managers for accessing Oracle and Mini SQL

databases. The last of the mentioned task managers allows a uniform access to a wide

variety of database management systems (including those on mainframes) from a single

task manager.

5.1.2.3 OrbWork Servers

A single OrbWork host runs a number of task schedulers, each of which is implemented

as a separate CORBA object. A CORBA object must reside within a CORBA server that

typically runs as a single operating system process. In order to save computer resources, a

group of OrbWork task schedulers may be placed within a single CORBA server that

functions as an OrbWork server. Each OrbWork server is designed to control any number

of task schedulers.

A workflow installed on the OrbWork enactment system may utilize any number

of heterogeneous hosts (of course, OrbixWeb must be available on each one of them;

clients/browsers may be used anywhere). Each of the hosts may have any number of

OrbWork servers. However, the most common approach is to keep the number of

OrbWork servers close to the number of available processors. Nowadays, some of the

available Java virtual machines are able to take advantage of the available processors to

run threads. Since the implementation of an OrbWork task scheduler is multithreaded, the

question of the number of OrbWork servers may be less critical in that if all of the

56

schedulers are placed within a single server, the schedulers will be able to utilize all of

the available processors.

5.1.2.4 OrbWork Manager

The OrbWork Manager is used to install workflows and activate all of the necessary task

schedulers. In addition to registering with Orbix Name Service, each task scheduler

registers with OrbWork Manager and notifies it of its precise location. In addition, since

each task scheduler provides a subset of the HTTP/HTTPS protocol, the scheduler

notifies the OrbWork Manager of the precise URL address that the end users and the

administrator can use to interact directly with it. The URL address is created when the

scheduler is initially installed and it contains the port number that has been assigned to

the HTTP/HTTPS server.

The manager is implemented as a CORBA object. It has an IDL interface that

allows OrbWork clients to install and administer a workflow as well as create workflow

instances. The manager provides an HTTP/HTTPS protocol, so that the same

administrative functions can be performed via the Web, from a common browser.

In order to provide an easy access to task schedulers, the OrbWork Manager also

functions as a URL redirector, when an end-user wishes to access his task's worklist (for

human task or collaboration task). This is necessary since the port number on which the

task scheduler's HTTP/HTTPS server is listening is assigned by the system at the time the

task scheduler is activated.

It is important to note that the role of the OrbWork Manager is necessary only at

the time a new workflow is installed or modified, or when an end-user is connecting for

the first time to her designated task. The manager does not participate in any task

scheduling activities.

57

5.1.2.5 Data Object

Data objects are implemented as CORBA objects, providing an IDL interface for

accessing all of the defined attributes and methods. As in the case of a task scheduler, the

data object implementation uses the object loader to load and save the state of each data

object. The CORBA server hosting the data objects is automatically shut down if no data

read/write requests arrive within a specified time period, and the dynamic loader saves

the state of the object.

As task schedulers implement flow of control within a workflow instance, data

objects must be made available at the successor tasks. Instead of the whole object, only

its object reference is sent to the task scheduler. When preparing to run the task, the task

scheduler accesses the necessary data object(s) (using the Dynamic Invocation Interface)

and extracts the relevant attribute values.

5.2 CaTCH Application

The primary technical objective of CaTCH is to investigate the use of rapidly evolving

technological development in the fields of desktop video-conference and Internet-based

communication and, to provide a reliable, secure, low-cost and low-bandwidth solution

enabling tele-consultation in the healthcare industry. But we can also use CaTCH as

collaborative application in more industries.

CaTCH provides healthcare information systems solutions involving the

integration of technologies such as: Internet/Web and ISDN-based communication

environments, desktop video-conferencing and data/application sharing, virtual patient

record, intelligent web access and filtering, network computing, and context-supported

coordination.

58

The following highlights some of the key R&D goals, which CaTCH investigated

with a view to applications in healthcare [SPP+99].

• Multimedia Collaboration supported by ISDN/POTS/LAN/Internet based desktop

conferencing. (e.g. physician-specialist consultation)

• Integrated Multimedia Patient Record sharing.

• Intelligent web based healthcare reference resource support.

• Scheduling/workflow

• Remote environment setup and usability

The CaTCH project can be chronologically classified into two distinct phases.

The key functionality difference between the two phases was that in Phase 1, the

collaboration mechanism was synchronous and live video conferencing was used for tele-

consultation. Phase 2 involved an asynchronous collaboration mechanism and tele-

consultation used a "store and forward" technique. We won’t present the overview of

Phase 1. For complete details on Phase 1, please refer to [V97, SPP+99]. Here we present

CaTCH design, architecture and sub-component of CaTCH in Phase 2.

5.2.1 CaTCH Design and Architecture

5.2.1.1 CaTCH Design Consideration

Asynchronous Collaboration is a store-and-forward type of a system. It is not real time

and there is no "live" collaboration taking place between the parties. The store-and-

forward approach offers quite a few advantages over the real time collaboration. First of

all it is purely based on the Internet and there is no real time communication overhead.

Dedicated communication infrastructure could be leveraged to speed up the entire

process. Each consultation object can have a variety of digital heterogeneous information

59

encapsulated within it and since it is not real time its bandwidth can virtually be

unlimited. In many cases the store-and-forward approach can be faster than its

synchronous counterparts as there is no delay involved in scheduling a suitable meeting

time between the collaborators.

Various security options can be enforced on the consultation object. It could be

encrypted before its transmission and public/private keys would be needed to access

them. The communication can be made more reliable by using some kind of client-server

handshake protocol and any loss of data can be immediately replenished by

retransmission of the consultation object or a segment of the object.

Another interesting fact to be noted is that the state of the consultation at any

instance is the collaboration object. In a synchronous system extra controls need to be set

up to monitor the collaboration to provide a consultation summary for later use. In an

asynchronous collaboration, the consultation object undergoes multiple annotations by

various collaborating partners and the collaboration state can be encapsulated captured

within the object itself.

Even though there is a lot of discussion going on about use of Internet as an

effective collaboration medium there was one issue that arose in our mind. The kind of

bandwidth, reliability and security problems, which were encountered in synchronous

collaboration, definitely show that the Internet in its current state today cannot handle a

real-time collaboration system. Even if it did, the information being exchanged would not

be of diagnostic quality. We need to revert back to dedicated secure communication

mediums such as ISDN, DSL and Satellite for diagnostic quality solutions. Given the

rapid rate of convergence in telecommunications with broadband options expected in

very near future, this can change within a year. On the other hand a store-and-forward

asynchronous collaboration technology might be able to use the Internet to provide a

secure and reliable consultation if the time delay factor is acceptable to the involved

parties.

60

The key research issues in the asynchronous component of CaTCH are as follows:

• Data Acquisition: Leveraging existing technologies to capture medical

information pertaining to a patient.

• Creation of Composite Patient Portfolio: High-level representation of the patient

information.

• Distributed Data Repository: Store CPP and all accompanying patient artifacts.

• Agent Based information transfer: Use of intelligent agents to provide specific

functions.

5.2.1.2 CaTCH Architecture

Figure 5.3 Architecture of Asynchronous component of CaTCH

Internet

Collaborating Partner
(Remote or Rural Healthcare

Facility)

Integrated
Patient

Database

Video Clips

Audio clips
Scanned
Images

Lab Reports
Test Results

Heterogeneous Digital
Information about the Patient

Data
Acquisition

Collaborating Partner
(Advanced or Specialized

Healthcare Facility)

Composite
Patient Portfolio

 Distributed
Data Repository Secure Access

High
Bandwidth

Data Transfer

61

The CaTCH architecture follows the client-server paradigm. Figure 5.3 illustrates the

architecture. The DDR (Distributed Data Repository) represents the server component of

the architecture. There are two types of "clients" that interact with the server. One of

them is the CaTCH-client and it is used for data acquisition, CPP (Composite Patient

Portfolio) creation and transferring data to the DDR. The other client is an Internet

browser (Internet Explorer 5.0) and is used for viewing the CPP and other patient

multimedia information.

5.2.2 Data Acquisition

Each physician could associate a multitude of heterogeneous multimedia information

with a patient. These could be video clips, X-Ray images, sonograms etc. In order to

transmit the multimedia information as a part of the consultation, they have to be

digitized from their native source. The collaborating physician should have certain basic

digitization equipment, such as video capture boards, to capture video clips transmitted

from analog tapes (scanners to scan images and X-Rays, microphones to capture audio

etc.)

5.2.3 Composite Patient Portfolio (CPP)

Once the data acquisition is completed, it needs to be transmitted over the Internet to a

universally accessible repository. The CPP is a representation of the heterogeneous

digital multimedia information that needs to be transmitted. It is more or less like a map

of the information that describes a particular physician's consultation request. The CPP is

encoded using XML. The XML notation was chosen because it is a widely accepted

standard for describing syntactic schemas

62

The patient multimedia information could be of heterogeneous types, file formats

and encoding. The CPP represents these. The CPP contains placeholders for the

consulting doctors to attach their comments regarding a particular case. The same CPP is

exchanged back and forth between the consulting physicians till the consultation is

closed. Hence, at any instance of the consultation, the CPP gives us the state of the

current collaboration.

The CPP basically contains all the information necessary for the physician to

describe a particular patient's condition during the consultation. Metadata information

about the various media elements attached by the physician is stored in the CPP. This

metadata is used for ensuring for the proper display of the multimedia information. They

can also be used for security purposes since the metadata provides encryption information

(if any) of the attached data. The CPP and the patient's multimedia information are

transmitted to the data repository where it is stored.

5.2.4 Distributed Data Repository (DDR)

The DDR is an Internet accessible repository where all the collaboration related

information is stored. The collaborating partners store the CPP and patient's multimedia

information (collaboration objects) on the DDR. The DDR has a web server component,

which serves these objects over the Internet using the HTTP protocol. These can then be

viewed using a web browser and the multimedia information is displayed using

appropriate plug-ins. The following outline the primary tasks performed by the DDR:

• Universal Accessibility: The DDR is assigned a unique domain name and is

universally accessible to all collaborating partners.

• Security for data being transported: Using Secure Socket Layer (SSL) and the

HTTPS protocol the web server can be configured to deliver encrypted

information.

63

• User authentication: Login and password requirements are placed on all users of

the system and only valid users are allowed to access the patient information.

• Reliability: The DDR should be very reliable with a very high "uptime".

The DDR forms the "server" component in CaTCH's client-server architecture.

Availability of XML management and querying tools could facilitate browsing,

cataloging and querying of the CPP. In the future a minimal WFMS can be used to

maintain worklists for individual doctors who participate in the collaboration for

scheduling and managing collaboration sessions.

5.2.5 Agent Based Information Transfer

The DRR ensures adequate security for information going out of it. But secure and

reliable means have to be established for storing information into the repository. Agents

can be used for information transfer between the remote health centers and the DDR's.

An agent at the remote physician's site takes the responsibility of transferring the

consultation information and the CPP to the DDR. It establishes contact with the agent at

the DDR, authenticates itself and starts sending the information. A three-way handshake

mechanism is used by the agents for the information transfer. The DDR agent uses the

CPP as a guide map for the rest of the patient information. If there was any lost byte of

data, it asks for a retransmission. The information could also be sent encrypted and it

could be decrypted at run-time at the DDR agent using private key of the accessing user.

64

CHAPTER 6

IMPLEMENTATION OF COLLABORATION MODEL IN

 ORBWORK ENACTMENT SYSTEM

One of this thesis’s goals is to implement the Collaboration task model in METEOR

WFMS. A prototype implementation of the Collaboration task in the METEOR system

has been completed. It has been tested with a workflow application example: Healthcare.

First we present the implementation and test environment for the thesis. We use OrbWork

enactment system for Windows NT 4.0 as the run-time system in METEOR WFMS,

OrbixWeb3.2 for Windows NT 4.0 from Iona, Inc. as the ORB (Object Request Broker)

and CaTCH as the collaborative tool. Both systems, OrbWork and CaTCH, were

implemented in Java at LSDIS Lab, University of Georgia. We choose Internet Explorer

5 (IE5) from Microsoft as the web browser because CaTCH requires the browser to

display the XML file directly and the security mechanism of OrbWork works only in IE5.

The database management system is MINI SQL (mSQL2.05) from Hughes Technologies

for both systems. We also use Apache 1.3.6 server as the web server and Netforge from

Novocode Software&Networking as the servlet engine with Apache server for CaTCH.

The web server, servlet engine and DBMS all reside in Solaris UNIX operating system.

The Client tool of CaTCH is implemented under Windows system. Under the

environment, we implement the Collaboration task model in OrbWork system. It includes

designing the specification file format for the workflow design tool and run-time system,

implementing collaboration worklist server, collaboration object structure and

collaboration notifier in general interface etc. We will discuss them in detail in next

sections.

65

6.1 The Specification Files for Collaboration Task

From the METEOR WFMS model, we know that the workflow specification files are

used to transfer workflow process information from a design-time tool to a run-time

system. The specification files can be generated by the workflow designer to store all the

information of the workflow process. The run-time system loads them to get the

information to execute the workflow process. The specification files should have all the

information the run-time system needs, such as task information, date object, input

parameters, output parameters and routing information, etc. Figure 6.1 shows the

functionality of the specification files in the WFMS.

Figure 6.1 Functionality of the specification files in the WFMS

All the specification files of a workflow process will be generated and stored in

the specific directory of the OrbWork run-time system. In order to present them clearly,

we need to define some names for convenience. Let’s suppose the OrbWork run-time

system is in G:\OrbWork directory, which can be named ORBWORK_HOME. All the

specification files of the workflow processes are stored in directory

G:\OrbWork\public_html\wflows, which can be named RUNTIME_DESTPATH. We

Workflow Graphic Designer

Workflow
process
information

Specification Files

Generates

Workflow run-time system

Read by

66

can also take the Healthcare application as an example, so the WFLOW_NAME is

Healthcare.

In current OrbWork system, there are two types of specification files. One type is

for workflow scope and the other is for individual task scope. First we present the files

for workflow scope. Then we discuss the files for individual task scope.

6.1.1 Specification Files for Workflow Scope

The workflow designer generates specification files for workflow scope, including

classes, hosts, start, tasks, and compile.bat. They are in the

RUNTIME_DESTPATH\WFLOW_NAME directory (e.g.

G:\OrbWork\public_html\wflows\Healthcare). Information in specification files is

defined for the workflow process level. In order to implement the collaboration task

model, we need to represent the task type as COLLABORATION in tasks file. Figure 6.2

shows an example tasks file and Figure 6.3 shows the format of tasks file.

Figure 6.2 Example of tasks file

13
Healthcare NETWORK pentax OrbWork
PatientRegister HUMANCOMPUTER pentax Healthcare
RetrievePatientData TRANSACTIONAL pentax Healthcare
MedicalTest NONTRANSACTIONAL pentax Healthcare
CollabDecision_AnalyzeSymptom HUMANCOMPUTER pentax Healthcare
AnalyzeSymptom_Collab COLLABORATION pentax Healthcare
AnalyzeMedicalReport HUMANCOMPUTER pentax Healthcare
CollabDecision_GenerateSolution HUMANCOMPUTER pentax Healthcare
GenerateSolution_Collab COLLABORATION pentax Healthcare
WritePrescription HUMANCOMPUTER pentax Healthcare
Billing NONTRANSACTIONAL pentax Healthcare
StorePatientData TRANSACTIONAL pentax Healthcare
StopProcess HUMANCOMPUTER pentax Healthcare

67

Figure 6.3 Format of tasks file

6.1.2 Specification Files for Individual Task Scope

Each task in a workflow process has its own specification files to record the specific task

information, such as the input parameters, output parameters, routing information,

security information, etc. Some files are defined for all task types, such as create, data,

foutputs, inputs, soutputs, admin.html and index.html. The information in these files

is for input parameters, output parameters, routing information and data object in the task.

They are in the RUNTIME_DESTPATH\WFLOW_NAME\tspecs\TASK_NAME

directory (e.g. G:\OrbWork\public_html\wflows\Healthcare\tspecs\PatientRegister).

Other specification files are dependent on the task type. For example, in Human task,

there are some html template files (station.html and TASK_NAME.html) to display the

data object in the workflow process. In Transactional task, there is a task file to store the

DBMS information, SQL commands and input and output of the SQL commands. These

specification files are mainly stored in the direcortory

RUNTIME_DESTPATH\WFLOW_NAME\tspecs\TASK_NAME\task (e.g.

G:\OrbWork\public_html\wflows\Healthcare\tspecs\PatientRegister\task). The workflow

graphic designer can generate the general and task type-related specification files for

every task according to the task type in the workflow process.

As discussed in chapter 4, we know Collaboration task is similar with the Human

task. We can let the workflow designer generate almost the same specification files as

those in Human task. We only add some files dependent on the Collaboration task type

and changed some files to form the specification files of Collaboration task.

N (Number of tasks)
Task1_Name Task1_Type Task1_Host Task1_Parent_Task_Name
……

TaskN_Name TaskN_Type TaskN_Host TaskN_Parent_Task_Name

68

The general specification files for an individual task are create, data, foutputs,

inputs, soutputs, admin.html and index.html. The file formats of them are the same for

all task types including Collaboration tasks. We don’t need to change them.

The specification files dependent on the Collaboration task (suppose the task

name is AnalyzeSymptom_Collab) are acl, CollabObjInvocation, CollabObjStructure,

CollabMIMEType, detain, localhandlers, params, type, TASKNAME.html

(AnalyzeSymptom_Collab.html), TASKNAME-View.html (AnalyzeSymptom_Collab-

View.html) and station.html. They are all in the directory

RUNTIME_DESTPATH\WFLOW_NAME\tspecs\TASK_NAME\task (e.g.

G:\OrbWork\public_html\wflows\Healthcare\tspecs\PatientRegister\task).

Among those files, the format and function of acl, detain, localhandlers,

params, station.html are the same as if the task is Human task. The designer can

generate these specification files for the Collaboration task in the same way as for the

Human task. On the other hand, the files, CollabObjInvocation, CollabObjStructure,

CollabMIMEType, type, TASKNAME.html (AnalyzeSymptom_Collab.html) and

TASKNAME-View.html (AnalyzeSymptom_Collab-View.html), are specialized only

for the Collaboration task. These files represent the special attributes of the Collaboration

task model discussed in Chapter 4. We will discuss implementation detail below.

CollabObjStructure file has the data structure of the collaboration object. It’s

used for workflow run-time system to create the collaboration object. This file is related

with the collaborative tool.

Figure 6.4 shows the format of this file and Figure 6.5 shows an example file for

CaTCH tool.

69

Figure 6.4 Format of CollabObjStructure File

Figure 6.5 Sample of CollabObjStructure File for CaTCH tool

In the format of CollabObjStructure file, the first line is the number of the fields

in the collaboration object. Next is the field information part. Each line is for one field.

Each field may have three parts: field name, field type and field default value. The first

two, field name and field type, are required and the last one, field default value is

optional. For example, in Figure 6.5, this is the CollabObjStructure file for CaTCH

tool. It has 6 fields in one CaTCH collaboration object. Every field only has two required

parts, field name and field type. There is no field default value in the fields.

CollabObjInvocation file is used for workflow users to access the Collaboration

object. This file represents the URL/Reference attribute in the Collaboration Object

Structure of the Collaboration task model (Please see Figure 4.7). It is related to the

collaborative tool. Figure 6.6 shows the format of this file and Figure 6.7 shows an

example file for CaTCH tool.

In the format of the CollabObjInvocation file, it allows users to access the

collaboration object through several ways. But generally, there is one way to access the

object in collaborative tool for most time. The first line “n” is the number of the

collaboration object invocation methods. For every invocation, there are four parts of

N (number of fields in the object)
Field1_Name Field1_Type Field1_Default_Value (Optional)
…
FieldN_Name FieldN_Type FieldN_Default_Value (Optional)

6
Sender string
Receiver string
Patient string
Subject string
Day string
File string

70

information. The first part is the number of replacement parameters in the invocation

Reference/URL. The second part is the field name for users to access the collaboration

object. The third part is the invocation URL/reference. If the invocation has replacement

parameter(s), we uses %1%, %2% … to represent the replacement parameter positions in

the URL/Reference. The fourth part is the filed(s) name of replacement parameter(s).

Each line in this part represents one replacement parameter. In the run-time system,

%1%, %2%… will be replaced by the values of these fields in the URL/Reference. There

is one point we should note that all of the field names in CollabObjInvocation file

should appear in the CollabObjStructure file also.

Figure 6.6 Format of CollabObjInvocation file

Figure 6.7 Sample of CollabObjInvocation file for CaTCH tool

For example, in Figure 6.7, we have one invocation method for CaTCH tool. In

the invocation, we have one replacement parameter. The field name for accessing the

n (number of CollabObj Invocation_1)
N1 (number of replacement fields in invocation_1)
Field name for this invocation_1
Invocation_1 URL/Reference
Replacement field1 name
…
Replacement fieldN1 name
…
Nn (number of replacement fields in invocation_n)
Field name for this invocation_n
Invocation_n URL/Reference
Replacement field1 name
…
Replacement fieldNn name

Invocation One

Invocation N

1
1
File
http://orion.cs.uga.edu:5080/~catch/data/%1%/%1%.xml
File

71

object is “File” and invocation URL is an HTTP request and there are two positions for

the replacement parameter: “File” field. The information in the CollabObjInvocation

file should be provided when we design the collaboration task of the workflow process.

CollabMIMEType file defines the MIME type of the collaborative tool in the

Windows system. OrbWork enactment system will load this file and get the MIME type

to invoke the collaborative tool. Because OrbWork has its own HTTP server or HTTPS

server, OrbWork will deal with the collaborative tool invocation URL to send back the

HTTP response in the corresponding MIME type. The web browser gets the response in

the specific MIME type and looks up the Windows system to find out which application

can be used to process the response and then invokes this application automatically. This

MIME type should be associated with the collaborative tool in the Windows system

separately. Figure 6.8 shows the CollabMIMEType file for CaTCH tool.

Figure 6.8 CollabMIMEType file for CaTCH tool

We have already discussed three specification files, CollabObjStructure file,

CollabObjInvocation file and CollabMIMEType file that are related to the

collaborative tool in the individual task scope. Now we will discuss the specification files

related to the WFMS run-time system in the individual task scope. They are type,

TASKNAME.html and TASKNAME-View.html files.

The format of type file is very simple. It only has one line: task type. If the task is

Collaboration task, there is COLLABORATION in the first line of the file. Figure 6.9

shows the example type file for the Collaboration task.

application/x-catch

72

Figure 6.9 Example of type file for the Collaboration task

In the current OrbWork enactment system, the Human task has two types of html

template files to display the data object. One is like TASKNAME.html (e.g.

PatientRegister.html) and the other is like TASKNAME-View.html (e.g. PatientRegister-

View.html). TASKNAME-View.html is just used to display the data object, which is in

the read-only status. The user can’t edit the data fields in this html file. But

TASKNAME.html allows the user to edit the data fields of the object. For every Human

task, the OrbWork system use TASKNAME-View.html first to display the data fields.

After the user chooses “Select” button in the html file, OrbWork system uses

TASKNAME.html to let user edit the data fields. We borrow this idea and apply it to the

Collaboration task. We also have two types of html template files for it,

TASKNAME.html and TASKNAME-View.html. They are very similar with those in the

Human task. We only need to modify them a little.

For Collaboration task, OrbWork system uses TASKNAME-View.html to

display the data fields and allows the user to initiate collaboration (invoking the

collaborative tool). After he initiates collaboration, the Collaboration task goes to Wait

for Reply status. The user can interact with the collaboration partner in this status. Then

after the collaboration is finished, OrbWork system uses TASKNAME.html to let the

user edit the data object and continue the workflow process. In TASKNAME-

View.html, we should replace the “Select”, “Done”, “Reset” and “Cancel” buttons with

Collaboration invocation links. Figure 6.10 shows the replacement in the TASKNAME-

View.html. For Collaboration task, we provide the URL link to invoke the collaborative

tool. This URL (%ORBWORK-ID%--$%SESSION-KEY%$--$Collab.html) will be

handled by OrbWork’s HTTP server or HTTPS server. Then an HTTP/HTTPS response

is sent back in the MIME type defined by the CollabMIMEType file. With the MIME

COLLABORATION

73

type, the collaborative tool will be invoked automatically. Parameters %ORBWORK-

ID% and %SESSION-KEY% will be replaced with detail information at run-time.

%SESSION-KEY% is the unique key for the collaboration session for the task in one

workflow instance. %ORBWORK-ID% is the workflow instance id in the run-time.

Figure 6.10 Replacement in TASKNAME-View.html between Human-Computer

task and Collaboration task

In current implementation of the Collaboration task model, the

TASKNAME.html for Collaboration task is the same as that for Human task. The

workflow designer can generate this file in the same way as that for Human task.

6.2 The Collaboration Worklist Server

Just like the worklist manager server in current OrbWork enactment system manages the

worklist for the Human task, we implement collaboration worklist manager server to

manage the collaboration worklist for the Collaboration task. These two worklist

manager servers are independent in the OrbWork enactment system. Although their

……
<input type="submit" name="ORBWORK-ACTION" value="Select">
<input type="submit" name="ORBWORK-ACTION" value="Done">
<input type="submit" name="ORBWORK-ACTION" value="Cancel">
<input type="reset" value="Reset"> </p>
……

Human-
Computer task

……
Initiate a CaTCH collaboration: <a href="%ORBWORK-ID%--$%SESSION-KEY%$--$Collab.html"
>CaTCH

Then Wait for a reply
……

BR
Collaboration task

Replaced by

74

functions and implementation are similar, the collaboration worklist manager server has

its own features for the Collaboration task.

The collaboration worklist manager server is implemented as a CORBA object.

It’s registered in the OrbWork enactment system when OrbWork enactment system is

setup (Meteor.OrbWork.SetupOrbWork). Actually it acts as an HTTP server or HTTPS

server with security features in the OrbWork (we may define the port number for the

HTTP server or HTTPS server in the OrbWork property file and will discuss the

OrbWork property file in the later section). The IDL interface allows it to be invoked by

OrbWork server, Collaboration task scheduler and other OrbWork components. Once

registered in the beginning of OrbWork setup, Collaboration worklist manager server stay

active to listen the port to get the HTTP or HTTPS request from users until OrbWork

enactment system shuts down. Figure 6.11 shows the IDL interface of Collaboration

worklist manager server.

Figure 6.11 IDL interface of Collaboration worklist manager server

In the interface, InstallTask function allows the OrbWork server to invoke it to

install a Collaboration task scheduler when we install a workflow application in the

OrbWork enactment system and the task is a Collaboration task. The parameter URL is

the root URL for all workflow application, which is defined in the OrbWork property file

interface CollabWorklistIf
{
 exception CollabWorklistError{ string msg; };
 //install support for handling a Collaboration task
 void InstallTask(in string WorkflowName,
 in string TaskName,
 in string URL);
 // post an collaboration work item to this worklist
 void PostItem(in string WorkflowId,
 in string WorkflowName,
 in string TaskName,
 in idata Data);
};

75

as OW_WFLOW_URL. PostItem function allows the Collaboration task scheduler to

post a Collaboration worklist item to the worklist when the task is executed at run-time.

Parameter Data is a two-dimension string array of name-value pairs. We will discuss

Collaboration task scheduler and Collaboration worklist item in detail in the next two

sections.

In general, the Collaboration worklist manager server works as an HTTP or

HTTPS server depending on whether OrbWork enactment system supports security

feature. Figure 6.12 shows how it works in the OrbWork enactment system.

Figure 6.12 Collaboration worklist manager server

When a Collaboration task is executed in a workflow application instance, the

user (1) sends an HTTP/HTTPS request through the web browser to the Collaboration

worklist manager server. Collaboration worklist manager server will deal with the

request. First, it analyzes the requested URL and (2) looks up the corresponding handler

in the URL resource table. These handlers are Java methods registered in the URL

resource table when the workflow application is installed (these handlers are for all

workflow instances) or a workflow instance is executed (these handlers are workflow

instance related). After getting the handler, Collaboration worklist manager server (3)

Web
Browser

1.Request

ORB

Collaboration
Worklist
Manager Server

URL Handler

…… ……

Handler

2.Look up

3.Execute

Found

4.Get Result

5.Responce

76

invokes it and (4) gets the result from it. Then it composes an HTTP/HTTPS response

and (5) sends it back to the client.

The handler resources are registered in two ways for two different types. One is

for all workflow instances, that means It’s workflow type related. InstallTask function is

responsible for the work when the workflow application is installed in OrbWork. The

other is only for one specific workflow instance. PostItem function is responsible for the

work when the instance is executed. For example, every collaboration session in a

workflow instance has a unique session key that is generated when the instance is

executed. So the handlers for the URLs with the session key should be registered only in

the PostItem function.

6.3 The Collaboration Task Scheduler

As described in Chapter 3, each task has its own task scheduler to manage the execution

in OrbWork enactment system. Its responsibility includes getting input parameters from

previous task(s), checking the invocation conditions, invoking the corresponding task

manager, generating output parameters and executing the transition to next task(s).

For the Collaboration task, we have implemented the collaboration task

scheduler to manage its execution. Besides the general features for all task types whose

work is done by Meteor.OrbWork.BaseTaskScheduler, it has its own features for

Collaboration task. The implementation for Collaboration task,

Meteor.OrbWork.CollabTaskScheduler, is much similar with the implementation for

Human task scheduler, Meteor.OrbWork.UserTaskScheduler. It needs to:

• Communicate with the Collaboration worklist manager server

• Get Collaboration worklist item

• Send worklist item

• Get data object value from previous task(s)

77

• Compose the HTTP/HTTPS response with the data object

• Invoke the execution of the task and schedule the transition.

6.4 The Collaboration Worklist Item

In OrbWork enactment system, every Human task in a workflow application has a

worklist, which is a list of worklist items. One worklist item represents an instance of the

task in the workflow application. Similarly, every Collaboration task has a collaboration

worklist of the collaboration worklist items. One collaboration worklist item represents

an instance of the collaboration task in the workflow application. Collaboration worklist

item tells the workflow user what he will do in the workflow process and collaboration,

and what is the status of the collaboration. We can use workflow name, task name to

identify a collaboration worklist for the task and use instance ID to identify the

corresponding collaboration worklist item. Meteor.OrbWork.CollabWorklistItem, the

implementation of Collaboration worklist item, has the following information:

• Workflow name, task name, instance ID

• Data object and collaboration data (we will discuss the collaboration object in the

next section)

• Collaboration session(s): Since a collaboration task in a workflow instance may

have several collaboration sessions, the worklist item may have several sessions

too. Each session represents one collaboration and has its own object for the

collaboration. In current implementation, we support only one collaboration

session for the collaboration task in an instance.

• Collaboration status: the status in the collaboration session.

• Collaboration session key: It identifies the collaboration session in the

collaboration task. Currently, we have one session key for the worklist item

78

because every collaboration task in an instance has one collaboration session in

our implementation.

• Collaboration notifier: It works as the notification between the OrbWork

enactment system and the collaborative tool. We will discuss it in detail in the

later section.

6.5 The Collaboration Object

As described in Chapter 4, Collaboration object structure is a principle part of the

Collaboration model of METEOR WFMS. In OrbWork enactment system, we implement

the collaboration object structure in Meteor.OrbWork.CollabObjItem. The

implementation supports one collaboration object item for one collaboration session. In

Figure 4.7, we show the collaboration object structure. In the implementation, the Data

Type in the structure is a vector of Data fields. Each Data Field is also a vector of four

attributes: name, type, value and URL/Reference for invocation. The URL/Reference

attribute is optional and doesn’t apply to every field. Only the field name appearing in the

CollabObjInvocation specification file will have the URL/Reference value. The

OrbWork enactment system will access the collaboration object through the field’s

URL/Reference. The collaboration objects will be created in OrbWork enactment system

according to the information in the CollabObjStructure and CollabObjInvocation

specification files described in the first section of this Chapter.

6.6 The Collaboration Notifier

In the Collaboration model of METEOR WFMS, there is a collaboration notification

mechanism in the general interface described in Chapter 4. We mentioned the notification

mechanism in the interface between WFMS and the collaborative tools is complicated

79

because it’s dependent on the architecture model and data schema of the collaborative

tools. There are two methods to implement the notification mechanism. One is that the

interface provides a general module of the collaboration notifier. This module is a

template having basic structure and abstract information generated by the workflow

designer. For each collaborative tool, we need to customize it according to the

collaborative tool’s architecture. In this thesis, we choose this method to implement the

notification mechanism. For CaTCH tool, we also customize the module with CaTCH’s

architecture and model.

The other method is that the interface provides APIs to WMFS and collaborative

tools. Through the APIs called in the WFMSs and collaborative tools, the interface can

connect these two systems to communicate with each other.

In current implementation, the workflow graphic designer may generate the

notifier module with the specification files. Figure 6.13 shows the basic structure of the

module. It’s a Java subclass of thread.

Figure 6.13 Basic structure of the notifier module

package Meteor.OrbWork;
// This class is supposed to complete by the user after generated by designer
public class CollabNotifierThread extends Thread
{
 String wflow_name;
 String task_name;
 String instance_name;
 String sessionKey;

URL CollabObjStructureUrl; // url for collab obj structure
URL CollabObjInvocationUrl; // url for collab obj invocation
CollabWorklistImpl collabWorklistMgr;
CollabWorklistItem collabWorklistItem;
protected MeteorMonitor mm = null;

public CollabNotifierThread(CollabWorklistImpl cw, CollabWorklistItem cwi, String wn,
String tn, String in, String k, URL uStructure, URL uInvocation){}

public void run(){}
}

80

The core function of the module is run(). Different collaborative tools may have

different notifiers according to their implementation. This function should be customized

for the collaborative tool after it’s generated by the workflow designer. Figure 6.14

shows the basic structure of run() function. This thread checks with the collaborative tool

every n seconds, which is given in workflow designer (it’s 60 seconds in Figure 6.14),

and gets the collaboration object(s) from it.

Figure 6.14 Basic structure of run() function

6.7 The Other Changes in OrbWork Enactment System

As we implemented the Collaboration model in OrbWork enactment system, we have to

add more variables for the Collaboration task in the OrbWork property file, which should

public void run()
 {
 while(true)
 {
 //While(has more collaboratin object)
 {
 CollabObjItem coi = new CollabObjItem(CollabObjStructureUrl, CollabObjInvocationUrl);
 for(int i = 0; i < coi.getFieldNo(); i++)
 {
 Vector f = coi.getFieldAt(i);
 /*******
 get v from collaborative tool for the collaboration object, v is a string
 ********/
 f.setElementAt(v, CollabObjItem.FIELD_VALUE);
 objKey += v;
 coi.setFieldAt(i, f);
 }
 coi.setInvocationToField();
 // current has only one session
 collabWorklistItem.AddObjItem(collabWorklistItem.GetSessionKey(), objKey, coi);
 } //END while of more collaboration objects
 try
 { sleep((int)(60*1000));
 }
 catch (InterruptedException e){}
 }
 }// end run()

81

in the OrbWork class path directory. These variables are all related with the

Collaboration task. Figure 6.15 shows the additional variables in the OrbWork.properties

file.

Figure 6.15 Additional Variables in OrbWork.properties file

OW_COLLAB_WORKLIST_PORT=9004
OW_COLLAB_WORKLIST_SECURE=false
OW_COLLAB_WORKLIST_SECURE_PORT=9006
OW_COLLAB_NOTIFIER_SUFFIX=CollabNotifier

82

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Workflow technology cuts across the boundaries of organizations to reach a large number

of users, resources and tools, to offer tremendous opportunities for streamlining business

processes, and gain unique competitive advantages in software reengineering. Workflow

management offers a powerful technique to cooperate, integrate and automate different

business tasks for today’s organizations, yet preserves the diversity of these tasks for

specialized functions used by the organizations. However, most WFMSs (either

commercial or research prototype) offer little or no support for collaboration, and this

support is critical to most business processes. Such limitations of current workflow

products prevent them from communication with outside collaboration partners within

their workflow processes. It also prevents them from becoming the backbone of corporate

computing, especially for mission critical application approach.

In this thesis, we have designed collaboration model in METEOR WFMS. In the

collaboration model, we add collaboration task to the task model and introduce the

collaboration object structure to the model. In addition, we design a general interface

between METEOR WFMS and collaborative tools. With the collaboration model, we can

integrate collaborative applications in the METEOR WFMS. Our effort in this area also

gives some valuable experience to those WFMSs that want to support collaboration in

their systems.

83

The other major contribution of this thesis is that we have implemented a practical

prototype of the collaboration model in OrbWork enactment system for METEOR. In the

implementation, we develop the collaboration worklist server, collaboration task

scheduler, the collaboration worklist item, collaboration object and collaboration notifier

according to the collaboration model for the METEOR WFMS. In addition, we design

the specification files between the workflow enactment system and the workflow

designer. This prototype implementation has been achieved successfully and

demonstrated with the Healthcare workflow application. This implementation also shows

an example of using CORBA technologies.

7.2 Future Work

Finally, in this section, we outline some suggestions to improve the design of the

collaboration model and implementation of the prototype as well as future research

possibility.

• Current workflow graphic designer for METEOR hasn’t supported the

collaboration task. We need to add the appropriate GUI to the workflow designer

and let it generate the corresponding specification files for the workflow

application.

• The current prototype works well with CaTCH collaborative application, but

haven’t tested it with other collaborative applications, such as Microsoft’s

NetMeeting. We can apply the prototype to other collaborative applications to test

whether the collaboration model and the prototype in METEOR work well.

• The current prototype hasn’t been tested with the exception handling mechanism

and dynamic feature of OrbWork enactment system. In the future, we can run the

workflow application in the OrbWork with whole features.

84

• In the collaboration model, we propose that there are two ways to implement the

collaboration notification mechanism. In current implementation, we use notifier

template and let the user customize it with the specific collaborative tool. In the

future, we can try the other way in that the interface provides APIs to both

enactment system and collaborative tools.

• Besides the run-time collaboration in WFMS, we can develop the design-time

collaboration in WFMS build-time. It could be document sharing and

collaborative designing.

85

BIBLIOGRAPHY

[A+97] G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan. Functionalities and

Limitations of Current Workflow Management Systems, IEEE Expert (Special

Issue on Cooperative Information Systems), (Vol.12, No.5), 1997.

[ADT99] S. Arpinar, A. Dogac, and N. Tatbul. An Open Electronic Marketplace

through Agent-based Workflows: MOPPET, Intl. Journal on Digital Libraries,

1999.

[BJS96] C. Bussler, S. Jablonski, H. Schuster. A New Generation of Workflow

Management Systems: Beyond Taylorism with MOBILE. ACM SIGOIS

Bulletin 17(1) 1996 17-20.

[C99] Collaborative Strategies LLC. Electronic Collaboration on the Internet and

Intranets. http://www.collaborate.com/publications/intranet.html.

[CO99] CommenceOne. Enabling the Business-to-Business Trading Web Using

marketSite 3.0 Open Market Platform. White Paper, March 1999.

[ED97] Ahmed Elmagarmid and Weimin Du. Workflow Management: State of the Art

vs. State of the Market, In Advances in Workflow Management System and

Interoperability.

86

[F95] L. Fischer. The Workflow Paradigm – The Impact of Information Technology

on Business Process Reengineering. Future Strategies, Inc., Alameda, CA, 2nd

edition, 1995

[G99] S. Gallagher. Person to Person: Collaboration over the wire. Enterprise

Development, October 1999

[GAP97] N. Guimaraes, P. Antunes, A. Pereira. The Integration of Workflow Systems

and Collaboration Tools. In Advances in Workflow Management System and

Interoperability

[GR93] J. Gary and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann Publishers, 1993

[GHS95] D. Georgakopoulos, M. Hornick and A.Sheth. An Overview of Workflow

Management: From Process Modeling to Workflow Automation

Infrastructure. Journal of Distributed and Parallel Database Systems,

3(2):119-153, April 1995

[HC99] I. Hilerio and W. Chen. Herbal-T, Enabling Integration, Interoperability, and

Reusability of Internet Components. Proceeding of the International Joint

Conference on Work Activities Coordination and Collaboration, 1999

[IBM98] IBM. IBM MQSeries Workflow Concepts and Architecture, Version 3.1

release 1, product number 5697-FM3, 1998.

87

[ILGP96] Y. Ioannidis, M. Livny, S. Gupta, N. Ponnekanti. ZOO: A Desktop

Experiment Management Environment. In Proc. 22nd Intl. Conf. On Very

Large Database 1996, 274-285.

[J98] S. Jajodia. Interview: Amit Sheth on Workflow Technology, in IEEE

Concurrency, April-June, 1998, pp. 21-23.

[K99] K. Kochut. METEOR Model version 3, draft LSDIS Lab, the University of

Georgia, 1999

[KLB97] A. Khetawat, H. Lavana and F. Brglez. Collaborative Workflows: A Paradigm

For Distributed Benchmarking and Design on the Internet. NCSU Technical

Report, February 1997.

[KLP99] A. Koufman-Frederick, M. Lillie, L. Pattison-Gordon, D. Watt, R. Carter.

Electronic Collaboration: A Practical Guide for Educators.

[KS95] N. Krishnakumar and A. Sheth. Managing Heterogeneous Multi-system Tasks

to Support Enterprise-wide Operations. The Journal on Distributed and

Parallel Database Systems, 3 (2), April 1995

[KSM99] K. Kochut, A. Sheth and J. Millor. ORBWork: “Optimizing Workflow” Using

a CORBA based, fully distributed process to create scalable, dynamic

systems. Component Strategies, March 1999, pp. 45-57.

[L99] Electronic Collaboration: A Practical Guide for Educators, Northeast and

Islands Regional Educational Lab at Brown University.

88

[Lin97] C. Lin, A Portable Graphic Workflow Designer, M.S. Thesis, Department of

Computer Science, University of Georgia, May 1997.

[LW99] H. Ludwig and K. Whittingham. Virtual Enterprise Co-ordinator—

Agreement-Driven Gateways for Cross Organisational Workflow

Management. Proceeding of the International Joint Conference on Work

Activities Coordination and Collaboration, 1999

[M+96] E. Mesrobian, R. Muntz, E. Shek, S. Nittel, M. LaRouche, M. Kriguer.

OASIS: An Open Architecture Scientific Information System. In Proc. 6th Intl.

Workshop on Research Issues in Data Engineering 1996, 107-116.

[MLK96] R. McClatchey, J. Le Goff, Z. Kovacs. An Application of Workflow

Management and Product Data Management Conventions in a Distributed

Scientific Environment. Manuscript, 1996

[N+91] J. Nunamaker, A. Dennis, J. Valacich, D. Vogel and J. George. Electronic

meeting systems to support group work, Communications of the ACM, 34(7),

[O98] Ontology Org. Reference Architecture for iMarkets, Part 1 Overview. 1998

[OMG98] Object Management Group. Workflow Management Facility, OMG document

bom/98-06-07, 1998

89

[PEL97] H. Pozewaunig, J. Eder, W. Leibhart. ePERT: Extending PERT for Workflow

Management System. Advances in Databases and Information Systems

(ADBIS) 1997: 217-224.

[S97] Amit Sheth. From Contemporary Workflow Process Automation to Adaptive

and Dynamic Work Activity Coordination and Collaboration. Proceeding of

the Workshop on Workflows in Scientific and Engineering Applications

[keynote talk/invited paper], Toulouse, France, September 1997.

[S98] B. Schlicher. Applying CORBA in the Enterprise.

[SGJ+96] A. Sheth, D.Georgakopoulos, S. Joosten, M. Rusinkiewicz, W. Scacchi, J.

Wileden and A. Wolf. Report from the NSF workshop on workflow and

process automation in information system. SIGMOD Record, 25(4):55-67,

December 1996.

[She95] A. Sheth. Tutorial notes on workflow automation: Apllication, technology and

research. ACM SIGMOD Conference, May 1995

[SJo96] A. Sheth and S. Joosten. Workshop on Workflow Management: Research,

Technology, Products, Applications and Experiences, August 1996.

[SK97] A. Sheth and K. Kochut. Workflow Applications to Research Agenda:

Scalable and Dynamic Work Coordination and Collaboration System.

Proceedings of the NATO Advanced Study Institute on Workflow

Management Systemsand Interoperability, August 1997.

90

[SKM+96]A. Sheth, K. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D. Palaniswami, J.

Lynch and I. Shevchenko. Supporting State-Wide Immunization Tracking

Using Multi-Paradigm Workflow Technology. In Proc. Of the 22nd Intl. Conf.

On Very Large Database (VLDB96), September 1996.

[SPP+99] A. Sheth, K. Parasuraman, S. Poreddy, S. Velmurugan, W. Karp and S. Crane.

CaTCH: Collaboration and Tele-Consulting in Healthcare. UGA Technical

Report, 1999

[SRG94] L. Stein, S. Rozen, N. Goodman. Managing Laboratory Workflow with

LabBase. In Proc. 1994 Conf. On Computers in Medicine.

[SVA99] A. Sheth, W.M.P. van der Aalst, I.B. Arpinar. Processes Driving the

Networked Economy: Process Portals, Process Vortexes, and Dynamically

Trading Processes, IEEE Concurrency, July-September 1999

[VW97] Gottfried Vossen and Mathias Weske. The WASA Approch to Workflow

Management for Scientific Application. In Advances in Workflow

Management System and Interoperability.

[WfMC94]Workflow Management Coalition: Workflow Reference Model, Workflow

Management Coalition Standard, WfMC-TC-1003, 1994

[Wod96] D. Wodtke, J. Weissenfels, G. Weikum, A. Kotz Dittrich. The Mentor

Project: Steps Towards Enterprise-Wide Workflow Management. In Proc. 12th

IEEE Intl. Conf. On Data Engineering 1996 556-565.

91

[WS97] D. Worah and A. Sheth. Transactions in Transactional Workflows. In

Advanced Transaction Models and Architectures, S. Jajodia and L.

Kerschberg, Eds., Kluwer Academic Publishers, 1997.

[X97] Weixiong Xu. NEOWORK: A Reliable, CORBA-Based Workflow Enactment

System For METEOR2, Master thesis of the University of Georgia, 1997.

[Zheng97] K. Zheng, Designing Workflow Processes in METEOR Workflow Management

System. M.S. Thesis, LSDIS Lab, Computer Science Department, University

of Georgia, June 1997.

	Dean of the Graduate School
	To Mom, Dad and Haibei

