
Simultaneous Detection of Communities and Roles from
Large Networks

Yiye Ruan
ruan@cse.ohio-state.edu

Srinivasan Parthasarathy
srini@cse.ohio-state.edu

Department of Computer Science and Engineering
The Ohio State University

ABSTRACT

Community detection and structural role detection are two
distinct but closely-related perspectives in network analyt-
ics. In this paper, we propose RC-Joint, a novel algorithm
to simultaneously identify community and structural role
assignments in a network. Rather than being agnostic to
one assignment while inferring the other, RC-Joint employs
a principled approach to guide the detection process in a
nonparametric fashion and ensures that the two sets of as-
signments are sufficiently different from each other. Roles
and communities generated by RC-Joint are both soft as-
signments, reflecting the fact that many real-world networks
have overlapping community structures and role member-
ships. By comparing with state-of-the-art methods in com-
munity detection and structural role detection, we demon-
strate that RC-Joint harvests the best of two worlds and
outperforms existing approaches, while still being competi-
tive in efficiency. We also investigate the effect of different
initialization schemes, and find that using the results of RC-
Joint on a sparse network as the seed often leads to faster
convergence and higher quality.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining

Keywords

community detection; structural role; role detection; social
networks

1. INTRODUCTION
Community detection and structural role detection are

two essential tasks in the realm of network analytics, and
they have received extensive research interests. Community
detection, with its roots in graph partitioning is concerned
with the inter-connectivity among nodes, as it aims at identi-
fying groups of nodes that are densely connected compared

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

COSN’14, October 1–2, 2014, Dublin, Ireland.

Copyright 2014 ACM 978-1-4503-3198-2/14/10 . . . $15.00.

http://dx.doi.org/10.1145/2660460.2660482.

with their neighbors. Exemplar applications include find-
ing clusters of users from social networks and functional
protein complexes from bioinformatics networks. On the
other hand, structural role detection focuses on finding sets
of nodes (i.e. roles) that share similar structural properties
(such as degree, clustering coefficient, and betweenness) and
characterizing different roles. Structural roles can often be
associated with various functions in a network. For example,
hub nodes with high degree in an epidemic network are more
likely to spread diseases, whereas bridge nodes with low de-
gree and high betweenness are gatekeepers and important
candidates for immunization. Recent work has leveraged
role detection techniques for identity resolution [11, 9], ex-
ploratory network analysis [9], and anomaly detection [20].

To date, however, studies on these two topics have been
performed independently, and there has been little synergy
between them. When an algorithm is performing commu-
nity (role) detection, it often ignores any role (community)
information that is available. In this work we argue that
community and structural role discovery should be inter-
dependent and complementary to each other. Real-world
communities often contain nodes with various roles for it to
function, such as ones that interface with other communi-
ties and ones that are peripheral to community cores. On
the other hand, the role assignment of a node also depends
on the communities it, its neighbors and beyond belong to.
Therefore there exists a strong and crucial need to detect
communities and roles jointly, and we provide such a method
in this paper. As shown in the following sections, the joint
discovery of communities and roles can generate communi-
ties and roles of higher quality, as compared with identifying
them separately.
Problem statement: Given an undirected, unweighted
network G(V,E) as the input, our goal is to design an al-
gorithm that outputs both community and structural role
assignments for nodes simultaneously. To overcome limita-
tions in prior work, we state the following desiderata:

• Nonparametric Guidance: Utilize role information
when inferring community assignment, and vice versa,
so that assignment information is able to provide guid-
ance to the detection process in a nonparametric fash-
ion.

• Iterative update: Improve community and role as-
signments iteratively, so that the guidance is no longer
static and always using the latest assignment informa-
tion.

• Overlapping communities and roles: Generate
soft assignments for both community and role, since
in many real-world networks nodes naturally belong to
multiple communities and share multiple roles, though
not uniformly. For example, one researcher can have
several research interests, and a star node also acts as
a bridge when connecting multiple tight knit commu-
nities.

• Diversity: Produce heterogeneous role assignment in
each community, and vice versa, so that community
and role assignments are as diverse from each other as
possible.

The last desideratum regarding diversity is because com-
munity and role assignments are expected to characterize
graph nodes from two different aspects, and thus nodes in
the same community are expected to possess diverse roles.
To illustrate the validity of this assumption in practice, we
studied the composition of roles in several networks that
have ground truth community assignments. Specifically, we
download three networks (Google Plus, Facebook, and Twit-
ter) from the SNAP network repository1, and run RolX [11],
a role detection algorithm, on them. The number of roles is
set to 4, as is automatically determined by RolX. In Google
Plus, among all large communities that altogether cover
more than 95% of all labeled nodes, 94% of them contain
nodes that altogether have at least 2 majority roles, and
48% of them have nodes that altogether have all 4 majority
roles. Similar results are found on Facebook and Twitter,
where 92% and 62%, respectively, of large communities con-
tain nodes that belong to at least 2 majority roles. This
shows that many real world communities indeed have di-
verse role assignment inherently.
Building on those observations and desiderata, we present

RC-Joint, our algorithmic solution to the above problem.
It treats community detection as a likelihood maximization
problem with diversity constraints by role assignment, and
it updates role assignment by performing soft clustering of
nodes with features derived from community memberships.
One iteration of each process is performed alternately, un-
til both community and role assignments converge. This
bootstrapping paradigm satisfies all four desiderata, and
is therefore able to mine community and role assignments
with the up-to-date knowledge of each other. We will de-
scribe RC-Joint in details in Section 3. An added benefit
is that RC-Joint is naturally parallel since inference is done
on each node, therefore parallel computing paradigms (such
as OpenMP) can be easily leveraged. This fact makes it
possible to scale RC-Joint to large networks.
In Section 4, we will discuss several optimizations in the

implementation of RC-Joint, including parallelism, that yield
significant speedup. We also investigate efficient initial-
ization schemes for RC-Joint, which lead to faster execu-
tion and often higher accuracy. We demonstrate the effi-
cacy of RC-Joint by experimenting on a wide array of real
and synthetic networks (Section 5). We compare RC-Joint

with state-of-the-art algorithms in both community detec-
tion and role detection, including BigClam [26], Markov
Clustering [22], Graclus [7], RolX [11] and GLRD [9]. Qual-
ity of the output are measured by F-score using ground truth
information. Results show that RC-Joint is able to detect

1http://snap.stanford.edu/data/index.html

communities and roles of higher quality, compared with ex-
isting methods. The improvement is up to 15% on real net-
works and 75% on synthetic networks.

2. RELATED WORK

2.1 Community Detection
Community detection, with its root in graph clustering

and graph partitioning, has been pivotal to network science.
A plethora of algorithms have been proposed to address
this task over the years, be it heuristic-motivated [14], cut-
based [7], modularity-based [6], information theoretic [21],
or stochastic flow-driven [22]. To cover all community de-
tection algorithms is beyond the scope of this paper, and
interested readers can refer to survey articles such as [8].

Among many challenges faced in the community detec-
tion literature, a prominent one is the need to find overlap-
ping communities. That is, community assignment is rather
“soft”. This desideratum is motivated by the observation
on many real-world networks that, by nature, community
memberships are not mutually exclusive. Various algorithms
have been proposed to address this need [25]. For example,
clique percolation method by Palla et al. [18] operates on
the assumption that overlapping communities consist of ad-
jacent small cliques. Airoldi et al. [2] extend the standard
stochastic block model [24] by letting a node’s community
indicator vector be drawn from a multinomial distribution,
creating the mixed membership stochastic block model.

Another family of methods approach the problem by con-
verting edges in a network to nodes in a new graph (called
line graph) and then applying regular non-overlapping com-
munity detection algorithms to create clusters of new nodes [1].
Since a node in the input network is incident to multiple
edges which may in turn be assigned to various clusters in
the line graph, it may belong to multiple communities. The
line graph, however, contains significantly more nodes than
the original network, making the algorithm too costly for
large networks.

Recently, Yang and Leskovec propose an affiliation-based
model to handle overlapping communities [26]. Each node
has an affiliation score with each community, and the affili-
ation strength is decided by its value. The probability that
an edge exists between two nodes is decided by the nodes’
community affiliations. Compared with block models, this
approach grants individual nodes more flexibility since the
linkage probability is no longer subject to the community-
specific values. None of those methods, however, consider
the structural roles of individual nodes.

2.2 Role Detection
While having a shorter history than community detec-

tion, role detection is a field of growing research interest.
Here, we focus on structural roles in a network, although
role has also been used to encompass latent topics in doc-
ument corpus [17]. Henderson et al. have proposed RolX,
a non-negative matrix factorization-based (NMF) approach
to decompose a node-feature matrix into node-role and role-
feature matrices [11]. They show that RolX is able to find
roles with distinct characteristics, and the role representa-
tion learned on one network can be transferred to another.

Rossi et al. extend role analyses to the dynamic environ-
ment, where a series of network snapshots are available [20].
By performing role detection on each snapshot first and then

calculating the transition of roles over snapshots, temporal
patterns of nodes are extracted. Here role detection serves
to provide high-level features for temporal behavior extrac-
tion, and its end applications include anomaly detection and
nodal behavior prediction.
Recently, Gilpin et al. study the possibility of supply-

ing extra guidance to role detection in order to incorporate
external knowledge or requirements [9]. Their framework,
GLRD, models role detection as a constrained NMF prob-
lem, where the guidance is provided as convex constraints
and specified per role. Instead of optimizing matrices as
a whole, they opt for an alternating least square formula-
tion to improve the efficiency. Three types of guidance are
described: sparsity (role assignment and/or representation
being sparse for each role), diversity (role assignment and/or
representation being different among roles), and alternative
role discovery (role assignment and/or representation being
different from a given assignment/representation). There
are still two limitations in GLRD: (1) It treats community
assignment as static input; (2) The recursive feature extrac-
tion scheme [11] it relies on incurs a complexity that is cubic
to the number of nodes.
Lastly, one common drawback in existing literature of role

detection is the absence of direct quality evaluation on pro-
posed algorithms, possibly due to the lack of network data
with ground truth on roles. Therefore previous work is con-
fined to exploratory analyses or transfer learning tasks where
roles themselves are utilized as high-level features.

3. ALGORITHM
Key intuitions: We view edges in the network as a result
of nodes being affiliated to communities. The stronger two
nodes are associated with a same community, the more likely
it is to observe an edge between them. Furthermore, nodes
in one community have diverse structural roles, thus the
assignment vectors of any community and any role ought to
be dissimilar. As for a node’s role assignment, we consider it
to be dependent on how clique-like the node is as well as how
many of the node’s neighbors belong to the same community
as it does. We will elaborate on the materialization of those
intuitions in the following sections.
As mentioned in Section 1, RC-Joint is an iterative al-

gorithm that improves community and role assignments al-
ternately. It takes as input a connected, undirected, un-
weighted graphG = (V,E), the number of communities (Nc)
and the number of roles (Nr). The convergence threshold
(δcomm and δrole) and maximal number of iterations can also
be specified. The output is a community score cvi for each
node v ∈ V and each community i = 1 · · ·Nc, and a role
score rvj for each v ∈ V and each role j = 1 · · ·Nr. Both
community and role scores are non-negative. Table 1 lists
notations used in the rest of the paper.
Algorithm 1 shows the pseudo code of the workflow, and

each component will be introduced below. RC-Joint starts
by initializing community and role assignments, and they
can be either specified by some user-provided configurations
(e.g. results from a previous run) or inferred automatically
(Sections 3.1 and 3.2). After that, community and role as-
signments are updated one after each other iteratively. The
algorithm stops when both communities and roles converge,

G(V,E) Network with the vertex set V and edge set E
Nc Number of communities to detect
Nr Number of roles to detect
δcomm Community assignment convergence threshold
δrole Role assignment convergence threshold
C |V |-by-Nc non-negative matrix of community scores
c•i Column vector of community scores for community

i

cv• Row vector of community scores for node v

R |V |-by-Nr non-negative matrix of role scores
r•j Column vector of role scores for role j

rv• Row vector of role scores for node v

Γv Set of nodes adjacent to node v

π Permutation on the set V (Equation 1)
fv Feature vector of v for role assignment (Equation 3)
β Softness parameter for role assignment (Equation 3)
ǫ Angular cosine threshold for the diversity constraint

(Equation 8)

Table 1: Table of notations

or if the maximal number of iterations has been reached2.
For the convergence check of community assignment, we im-
pose that the relative improvement on network likelihood is
less than δcomm, since its value range is network-dependent.
When checking the convergence of roles, we require the max-
imal change of any role score itself is less than δrole, since
role scores are always in the range [0, 1].

Algorithm 1 Workflow of RC-Joint

Require: G, Nc, Nr, δcomm, δrole
1: C0 ← InitComm(G,Nc)
2: R0 ← InitRole(G,Nr)

3: i← 1

4: while not (convcomm and convrole) and i ≤ MaxIter

do
5: Ci = UpdateComm(G,Ci−1,Ri−1, Nc)

6: if Likelihood(G,Ci)−Likelihood(G,Ci−1)

Likelihood(G,Ci−1)
< δcomm then

7: convcomm ← true ⊲ Communities converge
8: end if

9: Ri = UpdateComm(G,Ri−1,Ci, Nr)
10: if ||Ri −Ri−1||max < δrole then
11: convrole ← true ⊲ Roles converge
12: end if

13: iter← iter+ 1
14: end while

15: return Ci−1,Ri−1

3.1 Initializing Community Assignment
One naive way to initialize community scores of nodes is

to randomly assign community labels (1 · · ·Nc) to nodes.
Though fast, this method does not leverage the network’s

2Empirically the algorithm often converges within far fewer
iterations.

connectivity information, and it is highly probable that nodes
sharing the same initial label are far apart. Another simple
approach is to choose several vantage points, and to send
their labels via breadth-first traversal. While this guaran-
tees connectivity in each initial community, it does not al-
ways capture community structures since high-degree hub
nodes will pass a label to a large number of nodes with lit-
tle inter-connectivity. On the other hand, the initialization
scheme should be lightweight, otherwise it defeats the pur-
pose of creating an efficient algorithm. For example, we
find empirically that identifying neighborhoods with mini-
mal local conductance [10] runs three orders of magnitude
slower than our proposed initialization method below, on
the Google Plus network (with 108K nodes and 12M edges).
Our solution (InitComm) hinges on the intuition that two

nodes are likely to belong to the same community if they
share a large number of common neighbors. Therefore, we
want to group nodes according to relative amount of neigh-
bors they are sharing with each other, and to treat those
groups as initial communities.
One established method to efficiently calculate the pro-

portion of shared neighbors is via min-wise hashing [3]. The
adjacency list of a node can be viewed as a set, whose ele-
ments are from the universe of V , and we can generate one
min-wise hash of the adjacency list by applying π, a permu-
tation of V , on the set and taking the minimal value after
the permutation. Let Γv be the neighborhood of node v,
then its min-wise hash value under π, hπ(Γv) (or hπ(v) for
short), is:

hπ(v) ≡ hπ(Γv) = min
u∈Γv

(π(u)) , (1)

where π(u) is the value of u after permutation π. A min-wise
hash signature of length k for v is generated by randomly
drawing k permutations π1 · · ·πk and concatenating the cor-
responding hash values hπ1

(v) · · ·hπk
(v). The same set of

permutations are applied to all adjacency lists to generate
the corresponding length-k signature for each node.
Given all min-wise hash signatures, we create a top-down

hierarchy of nodes according to signature values. This pro-
cess will be referred to as grouping below. We start with
the first hash value (hπ1

(v), ∀v ∈ V), and split nodes into
groups such that all nodes in one group have the same hash
value. If a group is small enough (we use a size threshold of
|V |
Nc

), all nodes in it are given one initial community label.
Otherwise, the group is further split based on the second
hash value, and so on. This continues until either all k hash
values are used, or no more split is required. After grouping,
each node has one and only one initial community label.
If there are more than Nc initial community labels, we

merge nodes in the smaller groups to larger groups. To
achieve this, we perform a label propagation algorithm in the
following manner. We rank all groups in the descending or-
der of their sizes, and visit them in sequence. When visiting
a group, we assign its group label to the immediate neigh-
borhood of each member node. It is further required that if
a node has received any label from its neighbors, it can no
longer propagate labels to its neighbors. This makes sure
that labels “stay”within the local neighborhood.Label prop-
agation terminates when Nc labels have been successfully
propagated, after which a node can possibly have multiple
community labels. For a node v and each label i it has, we
let the initial community score c0vi = 1, otherwise it is 0.

Lemma 1 below shows that after InitComm, any node in
the network will find some other nodes belonging to the same
initial community in close proximity.

Lemma 1. Given a connected, undirected, unweighted net-
work G(V,E), and InitComm is run to produce the initial
community score matrix C0. For any node v and commu-
nity i such that c0vi = 1, if there exist a non-empty set of
other nodes φvi such that such that c0ui = 1, ∀u ∈ φvi, then
there is at least one node u ∈ φvi whose shortest path dis-
tance to v on G is at most 2.

Proof. There are three different scenarios:

I. v obtains label i after the grouping process, and it has
propagated i to its neighbors. Then any node u ∈ Γu

also has label i, and their shortest path distance is 1.

II. v obtains label i after the grouping process, and it does
not propagate i. Since φvi is non-empty, there exists
at least one node u that also obtains label i after the
grouping process because v does not propagate i. Since
v and u are in the same group in the grouping process,
hπ1

(v) = hπ1
(u). Because any π (including π1) is a

one-to-one self-mapping on V , there is at least one el-
ement that exists in the adjacency lists of both v and
u, i.e. Γv ∩ Γu 6= ∅. Therefore, v and u have at least
one common neighbor, and the shortest path distance
between them is at most 2.

III. v receives label i from the propagation of one of its
neighbors, u. Therefore v ∈ Γu, and their shortest
path distance is 1.

To conclude, for any node v and label i such that c0vi = 1,
if φvi 6= ∅, there always exists a node u such that v and u

have the same label and the shortest path distance between
them is at most 2.

3.2 Initializing Role Assignment
Role detection in RC-Joint is achieved by soft k-means

clustering on nodes using various structural features de-
scribed below. During the initialization stage, we assume
no knowledge of communities, and therefore we do not use
any feature that is derived from the community assignment.
While recursive feature aggregation [12] has been shown
to capture richer structural information than local features
(e.g. degree) alone, we choose not to use it because its com-
plexity is cubic to the number of nodes. To trade off between
feature richness and efficiency, we reuse the min-wise hash
signatures created in Section 3.1 to effectively approximate
the similarity of a node’s adjacency list and its neighbors’
adjacency lists.

The purpose of using adjacency list similarity as node fea-
tures is to gauge the distribution of a node’s structural sim-
ilarity with its neighbors. Intuitively, the more similar two
nodes’ adjacency lists are, the more triangles there are that
consist of both nodes. If a node has high similarity with
most of its neighbors, then it is more likely to be part of
a clique-like substructure. In contrast, a node having low
similarity with most of its neighbors resembles a star, and
it connects multiple communities.

Assuming the hash signatures for nodes v and u have
length k, then according to [3], the following statistic is an

unbiased estimator of the Jaccard similarity between Γv and
Γu:

ˆsim(v, u) ≡ 1
k

∑k
n=1 I[hπn(v) = hπn(u)] (2)

E[ˆsim(v, u)] = |Γv∩Γu|
|Γv∪Γu|

where I[•] is the identity function. For each node, we use the
minimum, maximum and three quantiles of the estimated
Jaccard similarity with all neighbors as its features.3 We
also include the logarithm of a node’s degree as a feature in
order to alleviate the large variance of node degree itself. We
note that there exist other definitions of structural similarity
that one can possibly employ, such as SimRank [13] and its
variants. However, they do not fit our purpose because the
costly computation is performed for all pairs of nodes, and
we will not be able to reuse hash signatures either.
To assign initial role information to nodes, we randomly

choose Nr nodes as centroids of k-means, and calculate a
node v’s role affiliation rvj with each centroid j using an
exponential kernel. Affiliation scores are L1-normalized over
all centroid for each node, that is:

rvj =
exp (−β||fv − fsj ||2)

∑Nr

n=1 exp (−β||fv − fsn ||2)
(3)

where fv (fsj) denotes the feature vector of node v (centroid
sj). The parameter β is used to control the “softness” of the
assignment, and a larger β value suppresses minor affiliation
scores. In our implementation the default value for β is 1.

3.3 Updating Community Assignment
Our goal in updating community assignment is to increase

the likelihood of network’s edge set E, given the community
affiliation of nodes. At the same time, we want the commu-
nity assignment to be diverse with regard to the role assign-
ment by imposing the requirement of diversity in any pair
of community and role.
Formally, the goal can be expressed as a constrained op-

timization problem:

maxC (Likelihood(G,C)) (4)

subject to c•i · r•j < ǫij , ∀i ∈ 1 · · ·Nc, j ∈ 1 · · ·Nr

Note that the desideratum of diversity is implemented as
constraints to the optimization problem, and this is where
role information is introduced to facilitate community de-
tection. For each community i and role j, it is required that
their inner product is less than a specified threshold value
ǫij .
We use the following setting to model the relationship

between C and the network G. Given the community affil-
iation score matrix C, we define the probability of an edge
existing between v and u as a result of their affiliations with
the community i:

P [(v, u) ∈ E | cvi, cui] ≡ 1− exp (−cvi · cui) . (5)

By treating the edge probability as independent when con-
ditioned on each community, it is easy to show that the
probability of observing the edge (v, u) with regard to the
whole community assignment matrix C is:

P [(v, u) ∈ E | C] = 1− exp (−cv• · cu•)
3We find that k = 30 is sufficient for the hash signature
length.

Intuitively, the larger affiliation scores to the same commu-
nity two nodes v and u have, the more likely it is to observe
the edge (v, u).

This setting can also be explained by viewing the multi-
plicity of edge (v, u) under community i as a Poisson random
variable with parameter cvi · cui. Due to the additivity of
Poisson distribution, the total multiplicity of edge (v, u) in
G is also a Poisson random variable with parameter cv• ·cu•.
Therefore, higher community affiliation scores lead to higher
edge multiplicity, and in terms of unweighted edge, higher
possibility of observing the edge.

Given C, the log-likelihood of the whole network is:

Likelihood(G,C) =
∑

(v,u)∈E

log (1− e−cv•·cu•)−
∑

(v,u)/∈E

cv• · cu•

(6)

For a specific node v, when the community affiliation scores
of all other nodes c−v• are fixed, the unconstrained version
of Equation 4 becomes convex on cv•, and gradient ascent
(lines 1 to 6 in Algorithm 2) can be utilized to solve it since
the likelihood’s gradient has a closed form:

∇cvi =
∑

u∈Γv

cui · exp (−cv• · cu•)
1− exp (−cv• · cu•)

−
∑

u/∈Γv

cui (7)

Because the gradient ascent algorithm optimizes the com-
munity assignment for one node each time, it is difficult to
directly factor in the diversity constraints in Equation 4,
each of which is community-specific. Therefore, we purpose
to relax the problem by first solving the unconstrained ver-
sion as described above, and then projecting the updated
community assignment to the closest possible point in the
feasible region that satisfies all diversity constraints. For
each community, the projection can be viewed as a quadratic
programming problem with inequality constraints (lines 7
to 9 in Algorithm 2), and it can be handled by various high-
level solvers.

ǫij in the constraints are threshold parameters of the inner
product between each pair of community and role vectors.
Since ǫij = cos (∠(c•i, r•j))·||c•i||2 ·||r•j ||2, all ǫij parameter
values can be controlled by one single parameter ǫ:

ǫij ≡ ǫ · ||c•i||2 · ||r•j ||2 (8)

where ǫ represents the angular cosine between two vectors,
and its domain is [0, 1] since community and role affiliation
scores are all non-negative. ǫ = 0 means the community and
role vectors are strictly orthogonal whereas ǫ = 1 indicates
no constraint. In our experiments we use ǫ = 0.5 (i.e. the
angle is no less than π

3
) as the default.

Algorithm 2 outlines the two steps to update communities
in each iteration.

3.4 Updating Role Assignment
In RC-Joint, influences of community and role assign-

ments go both ways. In order to let up-to-date community
information have impact on the role detection process, we
need to incorporate it into node features. To this end, we
append to fv, the feature vector of node v, one extra feature:
the proportion of v’s neighbors that have the same dominant
community label as v has.

|{u ∈ Γv| argmaxi′ (cui′) = argmaxi′ (cvi′)}|
|Γv|

(9)

Intuitively, a gateway node is more likely to belong to a
different community than most of its neighbors, while a cen-

Algorithm 2 UpdateComm(G,C,R, Nc)

Require: Learning rate l (fixed or learned from line search)
1: for v ∈ V do ⊲ Gradient ascent
2: Calculate ∇cv• according to Equation 7
3: for i ∈ 1 · · ·Nc do
4: cvi ← max (cvi + l∇cvi, 0)
5: end for
6: end for

7: for i ∈ 1 · · ·Nc do ⊲ Diversity constraints by roles
8: c′•i ← argminĉ ||ĉ− c•i||2,

s.t. ĉ · r•j < ǫij , ∀j ∈ 1 · · ·Nr and ĉ ≥ 0
9: end for

10: return C′

tral node in one community will mostly connect to other
core nodes in the same community.
Given updated feature values for each node, the next step

is to update all Nr centroids. Features of centroids are recal-
culated as the sum of feature values from all nodes, weighted
by their role affiliation scores. The step of adjusting role af-
filiation scores for nodes has the same form as Equation 3,
except that the underlying feature vector is slightly different
since the feature from Equation 9 was not used during role
initialization. Algorithm 3 lists the steps to update roles.

Algorithm 3 UpdateRole(G,C,R, Nr)

1: for v ∈ V do ⊲ Update node features
2: fv[intra-community neighbor ratio]← Equation 9
3: end for

4: for j ∈ 1 · · ·Nr do ⊲ Update centroids

5: fsj =
∑

v∈V rvj fv∑
v∈V rvj

6: end for

7: for v ∈ V do ⊲ Update role assignment
8: for j ∈ 1 · · ·Nr do
9: r′vj ← Equation 3
10: end for
11: end for

12: return R′

4. DESIGN CHOICES AND TECHNIQUES

FOR SPEEDUP
We dedicate this section to how RC-Joint can be imple-

mented efficiently and the selection of parameters. First
we show how results of RC-Joint on a sparse network can
be used to initialize the algorithm on the original network.
Then we discuss leveraging the inherent parallelism in RC-

Joint via parallel computing paradigms. Reusing computed
results and reducing subroutine’s problem size also help de-
crease the computation cost. Finally we shed light on the
process of selecting Nc and Nr values.

4.1 Initialization with Results from Sparse Net-
works

In Sections 3.1 and 3.2 we present our default methods of
initializing communities and roles. Here we present a refine-

ment that is analogous to the use of sampling in initializing
various clustering algorithms such as K-means, Expectation-
Maximization and even Graph Clustering [23]. Specifically,
here we first sample (sparsify) the edges of the original graph.
Next we run RC-Joint on the sampled (sparse) graph and
obtain the community membership and role associations.
We refer to this as the first run. We use the results of the
first run to initialize a second run of RC-Joint on the full
network. We refer to the latter as the second run.

Given the network G = (V,E), the sampled or sparse ver-
sion of it is denoted Gsparse = (V,Esparse) has the same
set of nodes but a smaller set of edges (Esparse ⊂ E). The
process of deciding which edges to keep in Esparse can be
viewed as a sparsification exercise. We examine two strate-
gies described below:

• Random Sparsification: Sample edges uniformly at
random. Retain sampled edges in Esparse.

• Local Rank Sparsification: Rank all edges accord-
ing to an edge similarity metric (e.g. estimate of the
Jaccard similarity in Equation 3). Edges that have a
higher triangle density (participate in a greater num-
ber of triangles within the network) will be ranked
higher. For each node, rank its incident edges accord-
ing to the above metric, and retain a number of top-
ranked edges. This approach has been shown to pre-
serve salient community structure especially in graphs
with communities of varying densities, and to deliver
high-quality results at a fraction of the cost [23]. Our
hope is this strategy can also help in our context.

To reiterate, given a sparse network Gsparse, we first sup-
ply it to RC-Joint and obtain community and role score
matrices Csparse and Rsparse. Then RC-Joint is run on the
original network G, using C0 = Csparse and R0 = Rsparse.
The key intuition here is that using those initial values
will allow the second run to finish much faster than using
the default because (1) Csparse and Rsparse yield better ob-
jective function values, so that fewer iterations are needed
to converge, and (2) Csparse and Rsparse are more sparse
(i.e. more zeros in affiliation scores), thus fewer operations
are performed when updating communities and roles itera-
tively.

In Section 5.3, we will report results from this sparse graph
initialization approach. The default strategy we adopt is lo-

cal rank sparsification, and for a node of degree d,
⌈√

d
⌉

in-

cident edges of the highest Jaccard similarity are preserved.
As expected, using Csparse and Rsparse indeed reduces the
total running time of RC-Joint (two runs combined), and
on several datasets it also improves the quality of detected
communities and roles.

4.2 Parallelizing RC-Joint

Main stages of UpdateComm (Algorithm 2) and UpdateRole

(Algorithm 3) are inherently parallelizable. When comput-
ing the community assignment, gradient calculation can be
performed on each node independently. Quadratic program-
ming with diversity constraints can also be done on each
community separately. During the process of updating role
affiliation scores, each node can be updated individually.
Lastly, updating centroids in role detection are paralleliz-
able as well, although in practice the improvement may not
be as significant since Nr is usually quite small.

In our implementation, we use OpenMP to exploit such
parallelism, and the speedup is significant. Distributed com-
puting architecture such as MPI can also be used, and we
leave this as one direction of future work.

4.3 Reusing Computed Results
We have already mentioned one instance of result reusing,

where min-wise hash signatures are used for both community
initialization and role feature calculation. Another case is
introduced in [26], where the authors point out that when
calculating the gradient of a node’s community affiliation
scores (Equation 7), the last item can be rewritten as

∑

u/∈Γv

cui =
∑

v∈V

cvi −
∑

u∈Γv

cui

and that
∑

v∈V cvi remains the same in each iteration. This

reduces the complexity of gradient calculation from O(|V |2)
to O(|E|).

4.4 Reducing Quadratic Programming Prob-
lem Size

In the second part of Algorithm 2, community affiliation
scores for each community are adjusted by being projected
to the closest point in the feasible region that satisfies all Nr

diversity constraints (one for each role). In its original form,
each quadratic programming problem need to solve for |V |
variables, and this becomes a performance bottleneck when
the network is large. However, the following lemma shows
that the problem size can be reduced to the number of non-
zeros in each community.

Lemma 2. For a community i, let

c′•i = argmin
ĉ

||ĉ− c•i||2

such that ĉ · r•j < ǫij , ∀j ∈ 1 · · ·Nr and ĉ ≥ 0. For any
v ∈ V , if cvi = 0, then c′vi = 0.

Proof. Assume there exists a node v ∈ V such that cvi =
0 and c′vi > 0. Let another assignment vector c′′•i be that
c′′−vi = c′−vi and c′′vi = 0. Apparently c′′•i satisfies the
non-negativity constraint.
For any role j ∈ 1 · · ·Nr, c

′′
•i · r•j = c′•i · r•j − c′virvj ≤

c′•i · r•j < ǫij . Therefore c′′•i also satisfies all diversity
constraints.
Finally,

||c′′•i − c•i||2

=

√

∑

v′ 6=v

(c′′v′i − cv′i)2 + (c′′vi − cvi)2

=

√

∑

v′ 6=v

(c′v′i − cv′i)2 + (c′′vi − cvi)2

<

√

∑

v′ 6=v

(c′v′i − cv′i)2 + (c′vi − cvi)2

=||c′•i − c•i||2
which contradicts with the claim that c′•i is closest to c•i.
Therefore, if cvi = 0, c′vi must be 0, too.

From Lemma 2, it is easy to see that one can obtain c′•i
by:

1. Creating a compact vector c̃i from c•i by keeping only
all non-zero elements.

2. Finding c̃′i, the closest projection of c̃i in the feasible
region.

3. Expanding c̃′i back to length |V | by filling correspond-
ing elements with 0.

Here, the number of variables in the optimization problem is
only the number of non-zeros in c•i, which is much smaller
than |V |.

4.5 Choosing Nc and Nr

The number of communities and roles to find are two
parameters provided by end users to RC-Joint, and there
are several strategies to select them. One can perform grid
search of Nc and Nr on a held-out development set, and
choose values that result in the highest likelihood. Alterna-
tively, measures like Bayesian Information Criterion (BIC)
or Minimum Description Length (MDL) can be calculated,
and Nc, Nr that minimize the combination of modeling and
error costs can be selected.

For our network dataset, we compare total numbers of
bits under different Nr values as in RolX [11], and find that
Nr = 4 often yields the minimum description length. There-
fore we use this value for all networks in experiments. For
networks without ground truth of communities, we pick Nc

by following the empirical evidence that community struc-
ture is most pronounced when the community size is approx-
imately 100 [16].

5. EXPERIMENTS AND EVALUATION
In this section, we apply RC-Joint to both real and syn-

thetic networks, aiming to understand its performance on
both community detection and role detection under various
scenarios. We first evaluate RC-Joint and state-of-the-art
algorithms on the community detection task (Section 5.1),
then compare it with existent role detection algorithms (Sec-
tion 5.2). We also investigate the effects of different ini-
tialization schemes on the algorithm’s execution and perfor-
mance (Section 5.3).

5.1 Performance on Community Detection

5.1.1 Networks for Community Detection

We download a collection of real-world networks that have
ground truth on the community membership4, and discard
edge directions if the original network is directed. The type
of networks varies from social network to product network,
and they have different levels of density as well as community
size. Table 2 summarizes the basic information of those
networks. All networks considered have ground truth on
overlapping communities.

5.1.2 Evaluation Metric and Comparisons

Because ground truth information is available, we can
gauge the performance of each community that an algorithm
has discovered and whether a ground truth community has
been successfully identified.

Since affiliation scores are real values instead of binary, we
filter off nodes with low affiliation scores from each commu-
nity to get a compact representation of communities. The
4They are all available from the SNAP network repository.

Network |V | |E| Number of Communities Avg. Community Size Community Ground Truth Definition

Facebook 4039 88234 193 23 Facebook friend list
Twitter 81306 1342303 4065 14 Twitter list
Google Plus 107614 12238285 468 136 Google Plus list
Amazon 334863 925872 120999 20 Product category
YouTube 1134890 2987624 14870 8 User group
LiveJournal 3997962 34681189 576120 12 User-defined group

Table 2: Information of networks for community detection. Communities may be overlapping.

filtering threshold can be set to
√

2|E|

|V |2
, square root of the

empirical edge probability [26].
For each ground truth community cĩ, we create a length-
|V | vector c̃•ĩ where c̃vĩ = 1 if v belongs to cĩ, or 0 otherwise.
The standard F-score formula is then extended to handle af-
filiation scores (assuming C and C̃ have been L1-normalized
over nodes):

precision(i, ĩ) =
c•i·c̃•ĩ
||c•i||1

, recall(i, ĩ) =
c•i·c̃•ĩ
||c̃

•ĩ
||1

,

f-score(i, ĩ) = 2·precision(i,̃i)·recall(i,̃i)

precision(i,̃i)+recall(i,̃i)

Let Ñc be the total number of ground truth communities,
we then calculate the overall F-score using the following for-
mula:

F (C, C̃) = 1
2
(
∑Nc

i=1
max

Ñc

ĩ=1
(f-score(i,̃i))

Nc
(10)

+
∑Ñc

ĩ=1
max

Nc
i=1

(f-score(i,̃i))

Ñc
)

We compare RC-Joint with three representative commu-
nity detection algorithms, BigClam [26], MLR-MCL [22],
and Graclus [7]. BigClam employs the same setting of com-
munity affiliation scores in Section 3.3 to discover overlap-
ping communities. It has been shown that BigClam out-
performs many existing overlapping community detection
algorithms, including line graph clustering [1], clique perco-
lation model [18], and mixed membership stochastic block
model [2]. However, it does not detect roles, nor does it
exploit the influence of roles on communities. MLR-MCL
takes a multi-level approach and identifies communities by
propagating stochastic flows over a network and identifying
each flow attractor as well as its contributors as one cluster.
Similarly, Graclus performs multi-level clustering where at
each level kernel k-means is run to optimize a partitioning’s
normalized cut. MLR-MCL and Graclus do not have the
ability to detect overlapping communities.

5.1.3 Results

Table 3 summarizes the evaluation results, with F-scores
of all algorithms on each network. We provide the actual
number of communities in each network as the input pa-
rameter to each algorithm.
The largest network, LiveJournal, only successfully fin-

ishes on RC-Joint with local rank sparsification, and MLR-
MCL. This demonstrates the benefits of using proper ini-
tialization, which will be further discussed in Section 5.3.
Moreover, Graclus crashes when running on Amazon and
YouTube, too. Comparing with BigClam, we find that RC-
Joint has better performance on most networks. This demon-
strates the efficacy of RC-Joint’s inherent design to provide

auxiliary information via the role assignment, in order to
facilitate the process of community detection. When initial-
izing RC-Joint with communities and roles identified from a
sparse network, the results are still highly competitive, and
for Google Plus the performance is significantly improved.
On the other hand, non-overlapping community detection
methods do not fare well in general, except for MLR-MCL
on Amazon.

The advantage of RC-Joint is also reflected in the log like-
lihood of the network edge set (Equation 6), as we find that
RC-Joint achieves better log likelihood values than BigClam
on all networks except Google Plus (Table 4). This shows
the same trend as in Table 3.

RC-Joint RC-Joint w/ sparse init. BigClam
Facebook -171085 -167758 -182284
Twitter -3305980 -3341592 -3381248
Google+ -57249698 -49624553 -52169083
Amazon -5452800 -5434790 -5476358
YouTube -19101405 -18713629 -19138838

Table 4: Log likelihood of the network, given the
extracted community assignment values. The closer
the log likelihood value is to 0, the higher the quality.

5.2 Performance on Role Detection
In this section, we investigate the performance of RC-

Joint on its second task: role detection.

5.2.1 Networks for Role Detection

Real-world networks: One challenge that the role detec-
tion literature has been facing is the availability of ground
truth on roles for real-world networks, and most work [11,
20] has to use some relevant tasks to indirectly measure the
quality and meaningfulness of roles extracted. To alleviate
the problem, we propose to use a node’s behavior in diffus-
ing and blocking information flows as the surrogate of its
role.

Specifically, we calculate two sets of measures for each
node and use them to define ground truth on roles. The
first set is influence and passivity values of each node, as de-
scribed in [19], where nodes (i.e. users) of information net-
works start and/or selectively relay cascades (e.g. URLs,
photos, memes). The influence of a user is based on how
many users it mobilizes and how difficult to mobilize those
users are. The passivity of a user, on the other hand, is
determined by how unlikely it is for him to forward infor-
mation and how influential his friends are. For a network,
we rank influence and passivity values over all users and di-
vide both into two bins, respectively. Bin combinations (four
types) are then considered to be the ground truth label for

Facebook Twitter Google+ Amazon YouTube LJ

RC-Joint 0.3928 (7%) 0.2431 (2%) 0.2160 (-11%) 0.4765 (2%) 0.0503 (2%) N/A
RC-Joint w/ sparse init. 0.3843 (5%) 0.2506 (5%) 0.2499 (3%) 0.4688 (1%) 0.0491 (0%) 0.1632
BigClam 0.3660 0.2381 0.2416 0.4664 0.0491 N/A
MLR-MCL 0.2701 (-26%) 0.1146 (-52%) 0.0100 (-96%) 0.5001 (7%) 0.0068 (-86%) 0.1497
Graclus 0.3026 (-17%) 0.2147 (-10%) 0.1789 (-26%) N/A N/A N/A

Table 3: F-scores on community detection, and the value in brackets is the percentage of improvement from
BigClam. LiveJournal (“LJ”) is only finished on RC-Joint with sparse network initialization and MLR-MCL.
Graclus also crashes on Amazon and YouTube.

the network’s role assignment. The second set of measures is
influence and blockade, as defined in [5]. Influence is defined
as the proportion of re-shares a user receives among all infor-
mation he has shared. Blockade is calculated as the ratio of
the number of cascades a user does not re-share to the total
number of cascades he has received. Similarly, influence and
blockade values are binned to create role labels. Both sets
of measures attempt to capture the duality of propagating
and impeding information flows, though the former set is
updated iteratively until convergence and the latter is not.
We use two information networks for our experiments:

Digg [15] and Flickr [4]. The Digg network has 19609 nodes
and 161650 edges, where all votes on a particular story is
viewed as a cascade. The Flickr network has 33887 nodes
and 2441316 edges, where all favorites of a particular photo
is considered to be a cascade.
Synthetic networks: Apart from information networks,
we also create a collection of synthetic networks where role
assignments are known in advance. We consider four differ-
ent nodal types here:

• Member of a 10-clique. We create five such cliques,
corresponding to 50 nodes in total.

• Member of a 5-clique. We create ten such cliques, cor-
responding to 50 nodes in total.

• Bridge of degree 2. We create 25 of them.

• Star of degree 10. We create 25 of them.

Bridges and starts are randomly connected to cliques, in
order to make the whole network connected. The last step
is to add noise edges between any pair of nodes with a fixed
probability ρ. The value of ρ is ranged to generate networks
with varying difficulty. Each node type described above is
treated as one role, and this forms the ground truth for all
synthetic networks.

5.2.2 Evaluation Metric and Comparisons

We use the same formula (Equation 10) to calculate the
F-score on role detection. Apart from RC-Joint, we also
compare with RolX and three variants of GLRD (sparsity,
diversity5, alternative role discovery constraints on role vec-
tors). Because details on the selection of constraint thresh-
olds in GLRD are not specified, we choose them in the fol-
lowing manner. For the sparsity constraint (on the target

role vector’s L1-norm), we let the threshold be |V |
Nr

. For

the diversity constraint (on the inner product of the tar-
get role vector and every other role vector) and alternative

5This is different from the diversity constraints in RC-Joint
(Equation 4).

role discovery (on the inner product of the target role vector
and any externally-specified vector), we set the threshold
of angular cosine (similar to ǫ in Equation 8) to 0.5. We
use communities identified by BigClam as the guideline for
GLRD’s alternative role discovery.

5.2.3 Results

F-scores of various algorithms on Digg and Flickr are re-
ported in Table 5. Results for synthetic networks are listed
in Table 6. We separate the results on real networks and
synthetic networks because the sources of ground truth are
different.

Influence/Passivity [19] Influence/Blockade [5]
Digg Flickr Digg Flickr

RC-Joint
0.2032 0.1372 0.1407 0.0565
(8%) (5%) (15%) (14%)

RC-Joint w/
sparse init.

0.2033 0.1371 0.1406 0.0563
(8%) (5%) (15%) (14%)

RolX 0.1886 0.1301 0.1225 0.0496

GLRD
Alternative

0.1885 0.1291 0.1228 0.0536
(0%) (-1%) (2%) (8%)

GLRD Spar-
sity

0.1792 0.1295 0.1217 0.0509
(-5%) (0%) (-1%) (3%)

GLRD
Diversity

0.1866 0.1304 0.1231 0.0522
(-1%) (0%) (0%) (5%)

Table 5: F-scores on role detection on real-world
networks with two sets of influence-induced ground
truth labels, and the value in brackets is the per-
centage of improvement from RolX.

ρ = 0.01 ρ = 0.05 ρ = 0.10

RC-Joint
0.7189 0.5531 0.3735
(35%) (75%) (34%)

RC-Joint w/ sparse init.
0.7275 0.5132 0.3689
(37%) (62%) (33%)

RolX 0.5314 0.3168 0.2782

GLRD Alternative
0.4877 0.3182 0.2822
(-8%) (0%) (1%)

GLRD Sparsity
0.5044 0.3186 0.2808
(-5%) (1%) (1%)

GLRD Diversity
0.5061 0.3270 0.2787
(-5%) (3%) (0%)

Table 6: F-scores on role detection on synthetic net-
works with different amount of noise edges, and the
value in brackets is the percentage of improvement
from RolX.

It can be seen that RC-Joint obtains results of higher
quality than both RolX and GLRD, uniformly. Initializa-
tion using sparse network also performs well. F-scores of
GLRD fall between those of RC-Joint and RolX, demon-
strating the power of providing community information to
guide role detection, and the downside of treating commu-
nity information as static input.

5.3 Effects of Initializing with Sparse Networks

5.3.1 Local Ranking

Previously in Section 4.1, we discuss the possibility of
seeding RC-Joint with results from a preliminary run on
a sparse version of the network. Moreover, we have already
seen the quality improvement this technique can provide in
Sections 5.1 and 5.2. Those sparse networks are produced by
local rank sparsification, where each node of degree d keeps
⌈√

d
⌉

incident edges with the highest Jaccard similarity of

adjacency lists.
In this section, we report the impact on RC-Joint’s time

consumption by this technique. Figure 1 shows the amount
of time it takes to run RC-Joint (with and without sparse
network initialization) as well as BigClam. Implementa-
tions of both RC-Joint and BigClam are in C/C++, using
OpenMP with 8 threads. Experiments are run on a desktop
with an Intel i7 quad-core processor and 16GB of RAM.

RC−Joint
RC−Joint with sparse network initialization
BigClam

 1

 10

 100

 1,000

 10,000

 100,000

 1e+06

Facebook Twitter Google+ Amazon YouTube LJ Digg Flickr

T
im

e
(s

ec
o

n
d

s)

Figure 1: Comparison of time consumption
(OpenMP with 8 threads). For RC-Joint with sparse
network initialization, the running time include both
runs.

As the plot suggests, using initialization from results of
the sparse network always leads to lower total running time
(both runs combined), as anticipated in Section 4.1. In the
cases of Facebook, Twitter, Google Plus and YouTube, it
is also faster than BigClam. This could be because proper
initialization lets RC-Joint start at a state closer to conver-
gence.
It is worth pointing out again that using sparse network

initialization enables us to operate on even larger networks
when RC-Joint itself or other methods becomes too slow.
For example, experiments on the LiveJournal network do
not finish in two days with either RC-Joint or BigClam.
However, by first processing on the sparse version of it and
then initializing another run with those results, RC-Joint
manages to finish the computation in 25 hours.

5.3.2 Benefits of Sparsification

One may ask if the benefits of edge sparsification to RC-

Joint can be precisely quantified with respect to efficiency

and quality. To evaluate, we consider Twitter, Google Plus,
two networks in our study. Similar results are observed for
other networks in our study. Edge retention probability val-
ues are set up so that both strategies retain roughly the
same number of edges in each network. Table 7 summarizes
the amount of time each edge sparsification strategy takes
for two runs, as well as the quality of results. F-score of the
first run is from the results of RC-Joint on the sparse net-
work itself, and F-score of the second run is from the results
of RC-Joint on the original network. We also calculate the
percentage of time saved and F-score increased compared
with the default RC-Joint, and report those values in corre-
sponding brackets.

Not all edge sparsification strategies are equal in terms
of efficiency and quality. Edge ranking leveraging similarity
information and local sparsification is more efficient than
random sparsification, and the results have higher F-scores.
Intuitively, local ranking is effective in capturing the skeleton
of the network and enables faster convergence. In terms of
quality of communities and roles, results from the local edge
ranking sparsification procedure is also significantly better
than random sparsification.

We note that numbers of RC-Joint iterations in the sec-
ond run of local ranking for Twitter and Google Plus are 55
and 66, respectively (not shown in the table). In contrast,
RC-Joint with default initialization takes 64 on Twitter and
100 on Google Plus. The reduction in number of iterations
is consistent with the speedup in running time. Therefore,
the first run on the sparse network helps to find a better ini-
tialization, decrease the number of iterations required, and
therefore reduce the total running time.

6. DISCUSSION
Across the board, RC-Joint achieves higher quality than

baseline methods which identify only communities or roles.
Existing single-tasked community (role) detection algorithms
suffer from not exploiting the latest knowledge on roles (com-
munities), accounting for lower performance. For all exper-
iments, we have reported absolute F-score values as well as
relative improvements over baseline methods. We note that,
in general, the problem we tackle is quite challenging (the
absolute F-score values are not very high, also observed in
other contemporary studies [26]). This reflects the inherent
difficulty of community and role detection as well as room
for future improvement.

Different initialization schemes also impact the efficiency
and performance of RC-Joint, and we investigate the poten-
tial of edge sparsification techniques in the context of creat-
ing good seeds of communities and roles. We find that edge
sparsification based on structural similarity is more effective
than selecting edges by random, and local edge sparsification
yields the most speedup and performance gain.

The RC-Joint approach we describe offers a marked de-
parture from most existing algorithms. In terms of com-
munity discovery, BigClam [26] is somewhat related in that
the relationship between community affiliation scores and
the edge set has a similar formulation. However, BigClam
only optimizes likelihood of the network without any con-
straint, and RC-Joint differs from it by being able to adjust
the community assignment to accommodate the latest role
assignment after each iteration. This difference we believe
accounts for RC-Joint’s qualitative improvements over Big-
Clam. With respect to role discovery, RC-Joint also bears

Local Random
First run Second run First run Second run

Time F-score Time F-score Total time Time F-score Time F-score Total time
Twitter 90 0.2172 4175 0.2506 (5%) 4265 (13%) 1268 0.1746 8612 0.2390 (0%) 9880 (-116%)

Google Plus 1042 0.1938 58844 0.2499 (3%) 59886 (46%) 8858 0.1311 89069 0.2360 (-2%) 97927 (12%)

Table 7: Running time (in seconds) and F-score of two runs of RC-Joint. The first run is on the sparse
network, and the second run is on the original network using results from the first run. Improvement of
running time and F-score over RC-Joint with no sparse network initialization are included in brackets.

important difference from existing NMF-based role detec-
tion algorithms, such as RolX [11] and GLRD [9], as it
uses soft k-means to identify roles, and it considers guid-
ance from the community structure. The guidance is non-
parametric and does not require extrinsic input from the
domain. Essentially, in RC-Joint, roles are treated as the
external knowledge to guide community detection, and such
external knowledge is dynamically updated after each itera-
tion.

7. CONCLUSION
We propose RC-Joint, a principled algorithm to mine

communities and structural roles from networks simultane-
ously. RC-Joint operates on the observation that commu-
nity and role assignments are complement to each other,
and utilizing information from one component can benefit
the discovery process of another. During each iteration,
RC-Joint updates communities and roles alternately by im-
proving the network likelihood and soft k-means objective
function, respectively. The end result is an algorithm that
is capable of identifying overlapping community and role
assignments simultaneously. Empirical evaluations of RC-

Joint and other state-of-the-art single-tasked mining algo-
rithms on real-world as well as synthetic networks show that
RC-Joint indeed produces communities and roles that have
higher quality with regard to the gold standard. Further-
more, we find that algorithm speedup as well as quality im-
provement can be achieved by running RC-Joint on a sparse
version of the network and using its results to initialize an-
other run on the original network.
For future work, it will be beneficial to extend RC-Joint

to directed and weighted networks because some real-world
networks also have those properties. Another direction is to
explore other community-induced node features to be used
in updating role affiliation scores. Finally, implementations
of RC-Joint using other more sophisticated parallel comput-
ing paradigms need to be investigated to realize even more
speedup.

8. ACKNOWLEDGEMENTS
We heartily thank Lu Wang and the reviewers for their

feedbacks, and Jaewon Yang for providing the implementa-
tion of BigClam. This work is sponsored by NSF Award
IIS-1111118 “SoCS: Collaborative Research: Social Media
Enhanced Organizational Sensemaking in Emergency Re-
sponse” and NSF Award DMS-1418265 “Sampling and In-
ference in Network Analysis”.

9. REFERENCES
[1] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link

communities reveal multiscale complexity in networks.
Nature, 466(7307):761–764, 2010.

[2] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P.
Xing. Mixed membership stochastic blockmodels.
Journal of Machine Learning Research,
9(1981-2014):3, 2008.

[3] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages
327–336. ACM, 1998.

[4] M. Cha, A. Mislove, and K. P. Gummadi. A
measurement-driven analysis of information
propagation in the flickr social network. In Proceedings
of the 18th international conference on World wide
web, pages 721–730. ACM, 2009.

[5] S. Choobdar, P. Rebeiro, S. Parthasarathy, and
F. Silva. Dynamic inference of social roles in
information cascades. Under review.

[6] A. Clauset, M. E. Newman, and C. Moore. Finding
community structure in very large networks. Physical
review E, 70(6):066111, 2004.

[7] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph
cuts without eigenvectors a multilevel approach. IEEE
Trans. Pattern Anal. Mach. Intell., 29(11):1944–1957,
2007.

[8] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3):75–174, 2010.

[9] S. Gilpin, T. Eliassi-Rad, and I. Davidson. Guided
learning for role discovery (glrd): framework,
algorithms, and applications. In Proceedings of the
19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 113–121.
ACM, 2013.

[10] D. F. Gleich and C. Seshadhri. Vertex neighborhoods,
low conductance cuts, and good seeds for local
community methods. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 597–605. ACM,
2012.

[11] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong,
S. Basu, L. Akoglu, D. Koutra, C. Faloutsos, and
L. Li. Rolx: structural role extraction & mining in
large graphs. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 1231–1239. ACM,
2012.

[12] K. Henderson, B. Gallagher, L. Li, L. Akoglu,
T. Eliassi-Rad, H. Tong, and C. Faloutsos. It’s who
you know: graph mining using recursive structural
features. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 663–671. ACM, 2011.

[13] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In Proceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 538–543.
ACM, 2002.

[14] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM Journal on scientific Computing, 20(1):359–392,
1998.

[15] K. Lerman and R. Ghosh. Information contagion: An
empirical study of the spread of news on digg and
twitter social networks. ICWSM, 10:90–97, 2010.

[16] J. Leskovec, K. J. Lang, and M. Mahoney. Empirical
comparison of algorithms for network community
detection. In Proceedings of the 19th international
conference on World wide web, pages 631–640. ACM,
2010.

[17] A. McCallum, X. Wang, and A. Corrada-Emmanuel.
Topic and role discovery in social networks with
experiments on enron and academic email. J. Artif.
Intell. Res.(JAIR), 30:249–272, 2007.

[18] G. Palla, I. Derényi, I. Farkas, and T. Vicsek.
Uncovering the overlapping community structure of
complex networks in nature and society. Nature,
435(7043):814–818, 2005.

[19] D. M. Romero, W. Galuba, S. Asur, and B. A.
Huberman. Influence and passivity in social media.
Machine learning and knowledge discovery in
databases, pages 18–33, 2011.

[20] R. A. Rossi, B. Gallagher, J. Neville, and
K. Henderson. Modeling dynamic behavior in large

evolving graphs. In Proceedings of the sixth ACM
international conference on Web search and data
mining, pages 667–676. ACM, 2013.

[21] M. Rosvall and C. T. Bergstrom. Multilevel
compression of random walks on networks reveals
hierarchical organization in large integrated systems.
PloS one, 6(4):e18209, 2011.

[22] V. Satuluri and S. Parthasarathy. Scalable graph
clustering using stochastic flows: applications to
community discovery. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 737–746. ACM,
2009.

[23] V. Satuluri, S. Parthasarathy, and Y. Ruan. Local
graph sparsification for scalable clustering. In
Proceedings of the 2011 international conference on
Management of data, pages 721–732. ACM, 2011.

[24] T. A. Snijders and K. Nowicki. Estimation and
prediction for stochastic blockmodels for graphs with
latent block structure. Journal of Classification,
14(1):75–100, 1997.

[25] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping
community detection in networks: The state-of-the-art
and comparative study. ACM Computing Surveys
(CSUR), 45(4):43, 2013.

[26] J. Yang and J. Leskovec. Overlapping community
detection at scale: a nonnegative matrix factorization
approach. In Proceedings of the sixth ACM
international conference on Web search and data
mining, pages 587–596. ACM, 2013.

