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Abstract - The widespread use of smartphones and sensors 

has made physiology, environment, and public health 

notifications amenable to continuous monitoring. 

Personalized digital health and patient empowerment can 

become a reality only if the complex multisensory and 

multimodal data is processed within the patient context, 

converting relevant medical knowledge into actionable 

information for better and timely decisions. We apply these 

principles in the healthcare domain of dementia. Specifically, 

in this study we validate one of our sensor platforms to 

ascertain whether it will be suitable for detecting 

physiological changes that may help us detect changes in 

people with dementia. This study shows our preliminary data 

collection results from six healthy participants using the 

commercially available Hexoskin vest. The results show 

strong promise to derive actionable information using a 

combination of physiological observations from passive 

sensors present in the vest. The derived actionable 

information can help doctors determine physiological changes 

associated with dementia, and alert patients and caregivers to 

seek timely clinical assistance to improve their quality of life. 

Keywords: Gerontechnology, activity monitoring, eldercare, 

patient monitoring, smart sensing 

 

1 Introduction 

 Alzheimer’s disease affects more than 5 million people 

claiming over 500,000 Americans annually [1]. As the sixth 

leading cause of death in Americans [1], its management is 

challenging. Current reactive healthcare costs more than 17% 

of GDP in the US [3, 4]. Alzheimer’s related healthcare costs 

alone are around $150 billion a year to Medicare and 

Medicaid [1]. To add to the challenge, dementia is an 

umbrella term that encompasses various forms of the disease 

such as Alzheimer’s disease, vascular dementia, and 

Huntington’s disease, to name a few [2]. Not only are the 

healthcare costs associated with dementia staggering, but the 

impact on the caregivers is also a critical challenge; in 2013, 

15.5 million family and friends provided 17.7 billion hours of 

unpaid care to those with Alzheimer's and other forms of 

dementia – care valued at $220.2 billion [1]. With the 

exponential rise of the older population due to the baby 

boomers, the number of people with Alzheimer’s disease (the 

most prevalent form of dementia) is estimated to reach around 

13.8 million [1,6]. This creates the strong need for 

unobtrusive sensing modalities that can help monitor people 

with dementia and support caregivers.  

 With increasing adoption of mobile devices and low-cost 

sensors, an unprecedented amount of data is being collected 

[5]. However, in the context of dementia, it is challenging to 

convert this huge amount of data into actionable information 

that can: a) help detect behavioral changes in an individual 

with dementia and b) provide relevant information to the 

clinician supporting them in treating chronic illness. In our 

previous work, we derived actionable information from 

physical and physiological data collected from children 

diagnosed with asthma. We have developed kHealth kit [9, 

28] a semantics-enabled smart mobile application with 

sensors, to capture observations from machine sensors 

(quantitative) and people (qualitative) in the domain of 

asthma [30]. We also have active clinical collaborations to 

investigate and evaluate the use of kHealth technology for 

reducing readmission of GI (gastrointestinal) and ADHF 

(acute decompensated heart failure) patients after their 

discharge from the hospital.  

 This paper reports our investigation to validate the 

sensors that will be used for the purpose for our ongoing study 

of physiological and behavioral markers of dementia. Using 

these markers, we aspire to build a model to detect changes in 

dementia patients and eventually attempt to predict adverse 

events. Specifically, we describe our preliminary work in 



validating the parameters extracted from one of the most 

popular wearable sensors, Hexoskin, from Carre Technologies 

[7]. The Hexoskin system contains cardiac sensors, breathing 

sensors, and accelerometers that can be used to monitor 

movement, heart rate, and breathing in real-time [8]. Using 

this wearable technology, physiological parameters can be 

computed in a continuous and unobtrusive way. In this study, 

we analyze the data for six participants with varying 

demographics and discuss our results. Our analysis provides 

crucial insights into the physiological changes associated with 

dementia as well as analyze the temporal behavior of the 

patient. These insights can help clinicians diagnose and treat 

the illness and improve health management for the patients.  

2 Related Work 

 The availability of low-cost sensors and mobile devices 

for monitoring physiological, physical, environmental, and 

cognitive health — within human bodies [10], on humans [11] 

and around humans [12] — are revolutionizing healthcare 

[13]. Microsoft Kinect and on-board sensors on mobile 

phones are being increasingly adopted in assisted living 

environments [14] and hospitals [15] for monitoring activities 

of daily living.  

 This trend is sure to accelerate with increasing FDA 

certification of devices or Internet of Things. With the rise of 

baby-boomers in the recent times, there has been an increase 

in research with Alzheimer’s patients. In [16], the researchers 

conducted a study to compare the gait parameters for 

dementia patients and older adults without dementia using a 

single waist-worn accelerometer. The results were promising; 

however, it may be difficult for a person with dementia to 

wear an accelerometer unless properly concealed. In other gait 

extraction methods, researchers tested gait parameters 

extracted using the Microsoft Kinect to validate the sensor 

data [17].  

 In recent work on Ambient Assisted Living (AAL) 

technologies, there has been a strong interest in commercially 

available sensors. Studies such as [18] have highlighted the 

potential for commercial sensors, including the Hexoskin vest 

as remote monitoring technologies that can help detect 

behavioral changes in older adults. However, there needs to 

be an assessment of the instrument before testing the sensor 

with dementia patients. In a recent study [23], the Hexoskin 

was used as a sensor to test the quality index of the ECG 

signal from the heartrate sensor. However, there was no 

evaluation of the parameters extracted from the sensor or 

instrument validation for the data obtained from the Hexoskin. 

There is also an unpublished work using the heartrate, 

breathing rate and activity sensors from the Hexoskin at [27]. 

However, there was no evaluation of the cadence parameter, 

nor exploration of the parameter relationships in the study that 

is essential before using this sensing modality for longitudinal 

studies in healthcare domains like dementia. 

 In this work, we present a systematic study and a much 

deeper understanding of various physiological observations 

collected from Hexoskin. We demonstrate the feasibility of 

Figure 1. The kHealth Dementia application will measure physiological signals from the person with dementia as well as the 

caregiver to provide a deeper understanding of the behavior changes contributing to dementia  



using insights gained by the analysis of physiological 

observations in dementia management.  

 

3 Experiments and Analysis 

 In this section, we will discuss our proposed system 

setup for monitoring people with dementia. In the proposed 

plan of study, we hope to study the behavior of both the 

person with dementia as well as the caregiver. In the 

neuropsychiatric inventory study by Cummings [19], greater 

cognitive impairments were reported for people with dementia 

over time. The symptoms include agitation, apathy, 

depression, aberrant motor behavior, and abnormal nighttime 

behavior. Moreover, the deterioration in patient behavior and 

personality increases the stress on caregivers and leads to 

negative outcomes which need to be monitored to ensure that 

the caregiver can sustain his or her role to provide support to 

the person with dementia [20]. By continuous, unobtrusive 

monitoring of the physiological parameters of the person with 

dementia as well as the caregiver, we can detect changes in 

the movement and sleep patterns of the patient as well as the 

stress generated on the caregiver that are useful indicators for 

clinicians. Figure 1 shows the overall block diagram of our 

proposed approach. Commercially available sensors will be 

used to monitor both patients and caregivers, a daily 

questionnaire based on the Zarit Burden Interview questions 

[22] will be routinely asked to the caregiver using a mobile 

application to provide ground truth. We utilize statistical and 

machine learning approaches to extract behavioral patterns of 

the patients so that we can detect anomalies that can be used 

to predict behavioral disturbances in people with dementia. 

This information can then be provided to the clinician for 

further action on their part.  

 As mentioned earlier, one of the most promising sensors 

to monitor the patient is the Hexoskin vest. This measures five 

parameters: heart rate (HR) in beats per minute (BPM), 

breathing rate (BR) in BPM, minute ventilation (MV) to 

detect the volume of gas inhaled or exhaled by the lungs in 

lungs per minute (LPM), cadence (C), as well as the activity 

level (A) on a scale of 0 to 1 using accelerometers in the X, Y, 

and Z directions (resolution of 0.004g) [7]. We can see a 

sample of the data extracted using the Hexoskin in Figure 2. 

Figure 2 shows an example of a Run activity. We can see that 

the HR increases gradually over time during the participant’s 

activity as we would expect. Similarly, we see an expected 

increase in the other parameters over time as the person’s C, 

A, BR, and MV rises over time. This corroborates our 

understanding of the Run activity. We will look at a more in-

depth statistical analysis of the parameters in Sections 3.1 and 

3.2. 

 As compared to other commercially available sensors, 

this has the added benefit of being worn as an under shirt by 

the person with dementia, instead of wearable bracelets like 

the Fitbit [21] that could confuse the patient who could then 

possibly take it off. Moreover, the Hexoskin vest is Bluetooth 

enabled with over 14 hours of battery life and can locally 

store more than 150 hours of recording [7]. We will now 

discuss our instrument validation for the cadence 

measurement of the vest in Section 3.1. 

3.1 Cadence Validation in a Controlled Setting 

In this subsection, we first validate the C (cadence) 

parameter since there is a direct relationship between the gait 

related activities mentioned above with cadence. Moreover, 

studies such as [16] highlight the importance of gait-based 

features in differentiating between people with dementia and 

people without. For this validation, there were four 

Figure 2. The Hexoskin data for a Run sequence showing the HR (top red), BR (blue middle), and A (yellow bottom) signals 

are labeled with the Y Axis on the left, and MV (purple middle), and C (green bottom) signals labeled with the Y Axis on the 

right.  The X Axis represents time in the format hour : minute : second. 



participants, two male and two female, between the ages 30-

35. Data were captured in a controlled method with each 

participant asked to sit for ten minutes, walk for ten minutes, 

run at their normal pace for ten minutes, and run hard (sprint) 

for one minute. Figure 3 shows the box plots for the C 

parameter for the four participants for the four activity states. 

As we can see from Figure 3, the fitness across the four 

participants varies; especially for the Run and Sprint activity 

states. As can be expected, the cadence value is zero for all 

four participants at rest. Moreover, we can see the variance for 

the different individuals varies for the different activity states. 

For example, Subject 2 has much lower variance for the Sprint 

activity state whereas Subject 4 has a high variance for the 

same activity state. We also see that there are several outlier 

values for the Run and Sprint activity states for Subject 1. This 

was due to the participant walking for very short intervals 

during the data recording.  

 
Figure 3. Box plots for Cadence (C) for the four participants 

in the controlled setting for the different activity states. 

 

Table I shows the average C values and the standard 

deviation across the four participants for the Rest, Walk, Run, 

and Sprint activity states. Table I and Figure 3 collectively 

show the expected result that: 

             CRest  <  CWalk  < CRun < CSprint 

 

Table I. Cadence (C) Mean and Standard Deviation Results 

across Subjects for the Different Activity States 

Activity State Mean Std. Dev 

Rest 0.00 0.00 

Walk 103.05 25.03 

Run 171.95 10.25 

Sprint 185.93 22.00 

 

 

 

Using minimum norm quadratic estimation (MINQUE) [29], 

we explored the intra-class correlations of subject, activity 

state, and their interaction, with the data. We found that a 

majority (95.5%) of the variation in the parameter C can be 

explained by activity state while only 1.8% of the variation 

can be explained directly by differences between the subjects. 

2.0% of the variation in cadence can be explained by 

individual differences in cadence between activity states. This 

leaves only 0.7% of the variation in cadence unexplained by 

Subject and Activity State. This indicates that the activity state 

affects the variance of C much more than differences in 

subjects or random error.  

In summary, we find that differences in cadence between 

activity states are aligned with expectations.  Further, we find 

that a vast majority of the variation in cadence can be 

explained by differences between subjects and activity states.  

These findings collectively support the precision and utility of 

the Hexoskin’s C parameter for detecting changes in activities 

across individuals. 

 

 

3.2 Physiological Parameter Evaluation in 

Semi-Controlled Setting 

 In this study, we evaluate the performance of all the 

parameters extracted from the Hexoskin: HR, BR, MV, C, as 

well as A. Six participants were asked to perform walks in 

semi-structured settings in accordance with their comfort 

level. The participants ranged from ages 30 – 65 and were all 

healthy adults. Two were female and the remaining four were 

male participants. As mentioned earlier, the only requirement 

was that the participants perform some gait-related activities 

according to their comfort level. This involved walking 

around the house, inside the house, performing household 

chores, as well as sitting and resting. Data were recorded for 

approximately 26 hours for this experiment. Since we 

validated the C parameter in Section 3.1, we will use this as 

the key measure to evaluate the performance of the remaining 

physiological parameters.  

3.2.1 Multivariate Analysis 

In this subsection, we describe our results on the 

multivariate analysis of variance (MANOVA) with cadence 

(C) as the independent variable (IV) and the remaining 

parameters (A, MV, BR, HR) as the dependent variables 

(DV). In this way, we can see the effect of C on the remaining 

parameters as a whole instead of separately, as we see the 

individual relationships between the parameters in Section 

3.2.2 [24]. We use the F-statistic calculated from Wilk’s 

Lambda as a multivariate criterion [25] for statistical 

significance of C as a predictor of the other parameters 

together (α = 0.05) for each subject. Partial η2 is used as a 

measure of the percentage of variance in the DV’s explained 

by C. 

 

 



Table II. MANOVA results with C as IV and HR, BR, A, and 

MV as DV. 

MANOVA Lambda F* Partial η2 

Subject 1 0.128 28922.56 0.871 

Subject 2 0.160 26888.12 0.839 

Subject 3 0.181 32369.65 0.818 

Subject 4 0.255 3275.61 0.744 

Subject 5 0.375 8020.30 0.624 

Subject 6 0.242 6354.81 0.757 

*Significant at α << 0.001, p-value ~0 

 As we can see in Table II, cadence is a highly significant 

predictor of the DV’s in all subjects (since the p-value is ~0 

for all the six participants). Moreover, C explains between 

62% - 87% of the variance for all the DVs across the six 

participants (as can be seen from the Partial η2 values). Since 

cadence is a direct measure of activity state, it makes sense 

that parameters associated with heart rate, respiration, and 

activity will be highly related to cadence. Specifically, it is an 

expected finding that as C increases, the subject’s oxygen 

demand is going to increase, which will in turn result in an 

increase in breathing and heart rates.  Positive correlations can 

be used as evidence that the Hexoskin is working as expected, 

and is taking valid measurements. Now that we have looked at 

the variance analysis for these physiological parameters as a 

group, we explore the individual correlations in the following 

section.   

3.2.2 Correlations between parameters 

In this subsection, we will look at the relationship between 

the five parameters from the Hexoskin sensor. Table III shows 

the average Pearson correlation [26] between the five 

parameters across the six participants. The parameters 

significant at 95% confidence interval are highlighted in bold. 

 

Table III. Average Pearson Correlation Results between the 

Five Parameters across the Six Participants. 

  Mean Std. Dev SE Tdf=5 P-value 

C-BR 0.54 0.20 0.08 6.53 0.001* 

C-HR 0.16 0.28 0.12 1.38 0.226 

C-MV 0.66 0.15 0.06 10.9 0.000* 

C-A 0.85 0.07 0.03 28.9 0.000* 

BR-HR 0.18 0.28 0.11 1.56 0.180 

BR-MV 0.18 0.21 0.09 2.04 0.097 

BR-A 0.52 0.18 0.07 7.06 0.001* 

MV-HR 0.31 0.28 0.11 2.75 0.040* 

MV-A 0.64 0.18 0.07 8.93 0.000* 

HR-A 0.19 0.28 0.11 1.69 0.152 

 *Significant at alpha = 0.05 

 As we can see, six of the parameter pairs show a strong 

correlation at the 0.05 level. The parameter HR shows the 

least correlation among the parameters. It is the least 

significant predictor for cadence across the six participants. 

Many factors could lead to this: the different body shapes and 

sizes may lead to different placements of the heart sensor 

across the participants that could lead to an error in 

measurement. HR varies across subjects based on the fitness 

level and HR can change due to stress or caffeine intake 

(observed with one of our participants), which has no 

relationship with C. Also, since a person’s heart is always 

beating (at varying levels) even when at rest, the HR value 

does not change as much as the other parameters when the 

person’s C or A increases; leading to lower correlation. This 

could specifically be the case for the Walk activity since the 

HR parameter may not increase significantly. However, we 

find that the BR and MV parameters exhibit more variation 

with C; these show strong potential to complement C and A in 

the detection of behavior patterns. 
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5 Conclusions 

 We tested and validated the sensor data extracted from 

the Hexoskin vest. We first validated cadence using different 

activity states of rest, walk, run, and sprint in a controlled 

setting. We then evaluated the performance of the other 

parameters in a semi-controlled environment using six 

participants from a more diverse age group. The parameters 

BR, MV, and A were found to be consistent with the C 

values. These show strong potential to differentiate between 

different activity and behavior patterns. This shows that all 

parameters except for HR may be directly useful in detecting 

changes in patient behavior for future studies. Even the HR 

sensor may be a useful parameter if we look at other features 

like temporal differences spikes in HR. We plan to explore 

these temporal trends in our future experiments.  

  We build on kHealth’s foundation to test our hypothesis 

that an evidence-based approach can help doctors determine 

more precisely the changes in behavior patterns for people 

with dementia. All our kHealth applications involve active 

clinical collaborations with medical professionals leading to 

evaluation with patients. Our next step is to test the system 

using participants with dementia. The Hexoskin has shown 

strong promise as a sensor platform for detecting changes in 

activity and behavioral patterns. Additional research is needed 

to study the efficacy of these physiological parameters as 

predictors for behavioral change in people with dementia. We 

can then develop a precise understanding of these effects in 



dementia patients in order to quantify the sensed data’s role 

for clinical assessment of their symptoms. The derived 

understanding can be used to alert caregivers and physicians 

so that appropriate measures can be taken to ensure the safety 

and well being of both the people with dementia, as well as 

the caregivers.  
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