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Abstract

An important question for the upcoming Semantic Web is how to best combine
open world ontology languages, such as the OWL-based ones, with closed world
rule-based languages. One of the most mature proposals for this combination is
known as hybrid MKNF knowledge bases [52], and it is based on an adaptation
of the Stable Model Semantics to knowledge bases consisting of ontology axioms
and rules. In this paper we propose a well-founded semantics for nondisjunc-
tive hybrid MKNF knowledge bases that promises to provide better efficiency
of reasoning, and that is compatible with both the OWL-based semantics and
the traditional Well-Founded Semantics for logic programs. Moreover, our pro-
posal allows for the detection of inconsistencies, possibly occurring in tightly
integrated ontology axioms and rules, with only little additional effort. We also
identify tractable fragments of the resulting language.

Key words: Knowledge Representation, Description Logics and Ontologies,
Non-monotonic Reasoning, Logic Programming, Semantic Web

1. Introduction and Motivation

The Semantic Web has recently become a major source of inspiration for
Knowledge Representation and Reasoning (KRR). The underlying idea of the
Semantic Web is to use KRR techniques to enhance data in the World Wide Web
with knowledge bases, making this data available for processing by intelligent
systems. Semantic Web has become a mature field of research, and industrial
applications of Semantic Web technologies are on the way. Semantic Web is a
topic that is clearly here to stay.
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However, we believe that the KRR formalisms used in the Semantic Web
are not adequate for several application areas within the Semantic Web. We
therefore motivate in this section why KRR formalisms combining open and
closed world reasoning are sometimes preferable over fragments of classical first-
order logics, and we present application scenarios illustrating the requirement for
that combination. Then, we show the limitations of already existing approaches,
and we state the main contributions of our proposal.

1.1. Open vs. Closed World Reasoning
The most prominent expressive KRR approach employed in Semantic Web

research is based on Description Logics [3, 27]. In particular, the Web Ontol-
ogy Language OWL [26] is based on the description logic SROIQ(D), and it
is a recommended standard by the World Wide Web Consortium (W3C) for
modelling Semantic Web knowledge bases (commonly known as ontologies).

Description Logics (DLs), in turn, bear a first-order predicate logic seman-
tics. DLs are monotonic and adhere to the Open World Assumption (OWA).
This means that (negative) conclusions drawn from a knowledge base must be
based on information explicitly present in the knowledge base. Being based on
classical first-order logic, DLs differ from other KRR formalisms, e.g., those
studied in the nonmonotonic reasoning field, that usually apply the Closed
World Assumption (CWA). Under that assumption, all non-provable expres-
sions are assumed to be false.

The decision to rely on the OWA appears to be a natural one in light of
the envisioned applications related to the World Wide Web: the absence of a
piece of knowledge should not generally be taken as an indication that this piece
of knowledge is false. However, there are also application scenarios where the
CWA, or at least the partial closure of the knowledge base, is a more natural
choice. Such scenarios can occur, e.g., if ontology-based reasoning is done in
conjunction with data stored in a database. Database data is usually considered
to be complete, and so statements not in the database should be taken as false.

As an example where a combination of open and closed world assumption
is desired, consider the large case study described in [54], containing millions of
assertions about matching patient records with clinical trials criteria. In this
clinical domain, open world reasoning is needed in radiology and laboratory
data. For example, unless a lab test asserts a negative finding, no arbitrary
assumptions about the results of the test can be made. That is, we can only
be certain that some patient does not have a specific kind of cancer if the
corresponding test has a negative result. However, as observed in [54], the closed
world assumption can and should be used with data about medical treatment to
infer that a patient is not on a medication unless otherwise stated. The work of
[54] applies only open world reasoning but claims that the usage of closed world
reasoning in data about medical treatment would be highly desirable and that
the combination of OWA and CWA is an open problem in their work. Similar
situations occur, e.g., in matchmaking using Semantic Web Services (cf. [22]),
and in other scenarios in the medical domain.
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In fact, life sciences, including medicine, is a prominently studied application
area for OWL. Several large-scale ontologies have been developed in this area
that are being used in practice, such as GALEN3 and SNOMED.4 These ontolo-
gies provide unified medical terminologies for the management and exchange
of clinical information. The knowledge bases typically consist of information
about anatomy, diseases, procedures, drugs, etc., and their applications range
from medical record management to diagnostics support. SNOMED is used, for
example, in the case study described above. All of these applications use ontol-
ogy reasoning based on the OWA. But it is not difficult to foresee situations in
these domains that would benefit from local closed world reasoning. Consider,
for example, that such a medical knowledge base is used to decide whether a
certain anaesthetic should be applied before surgery, depending on whether the
patient is allergic to the anaesthetic or not. This information might not be
available, and it should be modelled using the CWA: in an emergency situation,
unless we know explicitly about an allergy, we assume that the patient is not
allergic, and we apply the anaesthetic. Other examples can be found if we were
to model exceptions in anatomical terminology; e.g., the existence of persons
whose heart is actually on the right-hand side. Exception modelling is not di-
rectly possible in classical first-order logic (this is a problem usually known in
Artificial Intelligence as the specification problem) and so also not possible in
OWL using only the OWA.

All of these examples demonstrate why application developers frequently
voice that it would be favourable to have local closed world modelling as an
additional feature for ontology-based systems. More precisely, it would be de-
sirable to have a KRR formalism that allows us to interpret some parts of the
knowledge base under the CWA, and others under the OWA. Such capabilities
would considerably enhance the usability of OWL.

1.2. Combining Rules and Ontologies
Ontologies are a standard OWA formalism while rules usually apply the

CWA. A combination of ontologies and rules would clearly yield a combination
of the OWA and the CWA. However, combining rules and ontologies is a non-
trivial task, since a naive combination of ontologies and OWA-based rules is
already undecidable [32]. In fact, formalisms for rules and formalisms for on-
tologies differ substantially on how decidability is achieved. For ontologies, de-
cidability is achieved by specific syntactic restrictions on the available first-order
predicates, and by restricting the way these predicates can be related. Rules do
not have such syntactic restrictions, but are usually limited in their applicabil-
ity to the finitely many different objects explicitly appearing in the knowledge
base. An immediate effect of these differences is that some expressive features
of one of the approaches are not available in the other approach. Namely, rules

3http://www.opengalen.org/
4http://www.ihtsdo.org/snomed-ct/

3



make it possible to express: non-treeshape-like relationships [63]5 such as “an
uncle is the brother of one’s father”; integrity constraints [57] to state, e.g., that
a certain piece of information is explicitly present in the database; and closed
world reasoning and specification of exceptions, as discussed above. Ontolo-
gies, on the contrary, make it possible to express open world reasoning, reason
with unbounded or infinite domains, and they are thus well-suited to represent
many types of incomplete information and schema knowledge. For example, in
rule-based formalisms one typically cannot say that “every person has a father
and a mother who are both persons” without listing all the parents explicitly.
Our stance is that a combination of rules and ontologies is not only of interest
for current applications in the web, but also as a highly sophisticated means of
knowledge representation in general.

As argued in [52], a hybrid formalism combining rules and DL ontologies
should satisfy certain criteria:

• Faithfulness: The integration of DLs and rules should preserve the seman-
tics of both formalisms – that is, the semantics of a hybrid knowledge base
in which one component is empty should be the same as the semantics of
the other component. In other words, the addition of rules to a DL should
not change the semantics of the DL and vice versa.

• Tightness: Rules should not be layered on top of a DL or vice versa; rather,
the integration between a DL and rules should be tight in the sense that
both the DL and the rule component should be able to contribute to the
consequences of the other component.

• Flexibility: The hybrid formalism should be flexible and allow one to view
the same predicate under both open and closed world interpretation. This
allows us to enrich a DL with nonmonotonic consequences from rules, and
to enrich the rules with the capabilities of ontology reasoning described
by a DL.

• Decidability: To obtain a useful formalism that can be used in applica-
tions such as the Semantic Web, the hybrid formalism should be at least
decidable, and preferably of low worst-case complexity.

1.3. Hybrid MKNF and Stable Models vs. Well-Founded Semantics
As shown in [52], among the various proposals for combining rules and on-

tologies (e.g. [8, 12, 14, 16, 25, 36, 39–42, 48, 52, 59]) the only one satisfying
all four criteria above are Hybrid MKNF knowledge bases [52], which build on
the logics of Minimal Knowledge and Negation as Failure (MKNF) [46]. A de-
tailed discussion about the importance of Hybrid MKNF knowledge bases for
modelling knowledge in the Semantic Web can be found in [31], and [22, 23]

5The DL SROIQ [30] also provides role composition axioms, which can be used to address
some, but by no means all, use cases.

4



provide arguments for the usefulness of epistemic reasoning in the way it is
done in MKNF logics. The proposal by Motik and Rosati [52] seamlessly inte-
grates arbitrary decidable description logics with essentially (disjunctive) logic
programming rules, making it possible to reason over a combination of mono-
tonic open world knowledge and nonmonotonic closed world knowledge within
a single (hybrid) framework.

Several reasoning algorithms are presented in [52] for Hybrid MKNF knowl-
edge bases, and it is shown that the data complexity of reasoning within this
framework is in many cases not higher than reasoning in the corresponding
fragment of logic programming. Thus, adding an ontology to rules does not in
general increase the data complexity when compared to rules alone. But the
same cannot be said about adding rules to ontologies. E.g., we have at least a
data complexity of coNP for a combination of normal logic programming rules
with ontologies even if the data complexity of the Description Logics fragment
is in the complexity class P. Indeed, although the approach of Hybrid MKNF
knowledge bases is powerful, whenever we add rules with arbitrary nonmono-
tonic negation to an ontology, we in general loose tractability. Only a specific
limited use of nonmonotonic negation, i.e. stratified rules, admits to maintain
tractability (see [52]). However, we claim that robustness w.r.t. updates and
the combination of different sources of information is an important property
of a combination of rules and ontologies. Since it cannot be guarranteed that
this property is maintained in such cases, we obtain a higher computational
complexity in general.

The reason for that increase in the complexity lies in the fact that, as shown
in [46], rules are interpreted in a similar way as in the Stable Model Semantics
(SMS) [19] for logic programs, whose reasoning algorithms are NP-hard. So, if
a semantics based on the SMS is adopted, then any improvements on the com-
plexity of the combination of rules and ontologies are bound by NP-hardness.

The other major semantics for Logic Programming (LP) – the Well-Founded
Semantics (WFS) [62] – seems to offer a solution. WFS is a three-valued se-
mantics, where propositions can be ‘true’, ‘false’ or ‘undefined’ (while in SMS
propositions can only be ‘true’ or ‘false’), and WFS assigns a single model –
the well-founded model – to every nondisjunctive logic program. The WFS is
sound with respect to the SMS, in that whenever a proposition is true (resp.
false) under the WFS, then it is also true (resp. false) in all stable models.
Though the WFS is semantically weaker than SMS (in terms of the derivable
true and false consequences), reasoning in the WFS has a lower computational
complexity than in SMS – for normal programs the data complexity is P for
the WFS instead of coNP for SMS [7]. Our stance is that the lower complexity
bound makes WFS more promising than SMS as a basis for the semantics of
hybrid knowledge bases. This is even more the case in application areas such
as the one mentioned above [54] where huge amounts of data are involved.

Additionally, reasoning in SMS requires one to obtain the entire model of a
knowledge base (just like [52] for combinations of rules and ontologies), while
the WFS is amenable to top-down, query-driven reasoning, in which only the
part of the knowledge base “relevant” to a specific query is accessed [6]. This
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makes a WFS based approach all the more suitable for large scale applications.

1.4. Contribution
In this paper, we define a new semantics for Hybrid MKNF knowledge bases,

restricted to nondisjunctive rules, that soundly approximates the semantics of
[52] but is, in some important cases, in a strictly lower complexity class. In par-
ticular, when dealing with a tractable description logic, our combined approach
remains tractable w.r.t. data complexity. We achieve this by extending the two-
valued MKNF semantics from [52] to three truth values where each two-valued
model from [52] corresponds to a total three-valued model of our approach (and
vice versa) and where the least (w.r.t. derivable knowledge) three-valued MKNF
model is the well-founded MKNF model. Our proposal straightforwardly satis-
fies the four criteria presented above for the combination of rules and ontologies.
Moreover, the proposed semantics also guarantees the following properties:

• The well-founded MKNF model is faithful w.r.t. the two-valued MKNF
models of [52], i.e. each query that is true (resp. false) in the well-founded
MKNF model is also true (resp. false), in each two-valued MKNF model.

• Our proposal coincides with the original DL-semantics when no rules are
present, and the original WFS of logic programs if the DL component is
empty.

• If the knowledge base is consistent, then the approach is coherent in the
sense of [55], i.e. if a formula ϕ is first-order false in the ontology, then
the nonmonotonic interpretation of ϕ in the rules is enforced to be false
as well.

• If the knowledge base is inconsistent, then our approach allows us to detect
inconsistencies without any substantial additional computational effort
apart from the consistency check of the ontology alone.

• The computational data complexity of our approach depends on the com-
putational complexity of the applied DL, but if the considered DL is
of polynomial data complexity, then the combination with rules remains
polynomial.

1.5. Outline and Running Example
The rest of the paper is structured as follows. We first recall, in Section 2,

preliminaries on Description Logics, the logics of Hybrid MKNF, and Hybrid
MKNF knowledge bases. Then, in Section 3, we present our semantic framework
that extends MKNF semantics to three truth values, based on which the well-
founded MKNF model is defined. In Section 4 we show how to construct the
well-founded MKNF model and also how the inconsistency detection works. A
comparison to related work is presented in Section 5, before we conclude in
Section 6.6

6A preliminary, and much shorter version of this work was presented in [37].
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Throughout the paper, we make use of the following toy example.

Example 1. Consider an online store selling audio CDs. In order to attract
more clients and raise sales, the store manager decided to introduce more so-
phisticated tools for recommending and searching CDs.

For that purpose, an ontology is used for structuring and maintaining the
database of CDs. Each CD is associated with a unique identifier, a publisher,
a release date, and the pieces of music the CD contains. Each piece of music
has at least one track, and it is possible that a piece has several tracks (as is
common for classical music). Additionally, each piece has a unique identifier
and can be associated with the artist, composer, genre, origin of the piece.

Moreover, the system should be able to express guidelines for recommen-
dations, either based on general criteria or based on customer specifications.
For example, the store may want to automatically recommend to all customers
CDs that are on offer or top sellers. Or some customer may want to get recom-
mendations for CDs that he does not already own and that, according to some
preference criteria, he probably likes. Whereas the first guideline can be repre-
sented in the ontology, the second one requires the closed world assumption (e.g.,
for inferring “by default”, i.e., in the absence of evidence to the contrary, that
the customer does not have the CD) and can be represented by a nonmonotonic
rule. �

2. Preliminaries

In this section we recall preliminary notions that are needed in the rest of the
paper. In detail, we present general notions for Description Logics, the logics
of minimal knowledge and negation as failure, and Hybrid MKNF knowledge
bases.

2.1. Description Logics
We focus the presentation in this subsection on the description logic ALC,

a foundational description logic for the research around OWL. However, our
approach is basically independent of the underlying description logic, and the
reader familiar with description logics will have no difficulty in applying our
approach to more expressive description logics such as SHOIN or SROIQ,
that underlie OWL, resp. OWL 2.7 We also recall some standard extensions
appearing, for example, in lightweight description logics such as EL++ [2]. For
further background on description logics we refer to [3, 27].

The basic elements to represent knowledge in DLs are: individuals, which
represent objects in a domain of discourse; concepts, which group together indi-
viduals with common properties; and roles, which relate individuals. Based on
the sets NI , NC , and NR of individual names, concept names, and role names,

7See, e.g., [27] for the definitions of these and other decription logics and their relationships
to OWL and OWL 2.
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respectively, the syntactic elements of ALC are constructed according to the
following grammar (in which A ∈ NC denotes an atomic concept, C(i) denote
complex concepts, r ∈ NR denotes a role, and ai ∈ NI denote individuals):

C(i) −→ ⊥ | > | A | ¬C | C1 u C2 | C1 t C2 | ∃r.C | ∀r.C

The semantics of the syntactic elements of ALC is defined in terms of in-
terpretations. An interpretation I = (∆I , ·I) consists of a non-empty set ∆I

– the domain of I – and an interpretation function ·I that maps each individ-
ual a ∈ NI to a distinct element aI ∈ ∆I , each concept name A ∈ NC to a
set AI ⊆ ∆I , and each role name r ∈ NR to a relation rI ⊆ ∆I × ∆I . An
interpretation can be extended to complex concepts as follows:

>I = ∆I

⊥I = ∅
(C1 u C2)I = CI1 ∩ CI2
(C1 t C2)I = CI1 ∪ CI2

(¬C)I = ∆I \ CI
(∀r.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ rI implies y ∈ CI}
(∃r.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ rI and y ∈ CI}

An ALC knowledge base O is a finite set of axioms formed using concepts,
roles, and individuals. A concept assertion is an axiom of the form C(a) that
assigns an individual a to a concept C. A role assertion is an axiom of the
form r(a1, a2) that relates two individuals a1, a2 by the role r. Concept and
role assertions form the ABox. A concept inclusion is an axiom of the form
C1 v C2 that states the subsumption of the concept C1 by the concept C2. A
concept equivalence axiom C1 ≡ C2 is a shortcut for two inclusions C1 v C2 and
C2 v C1. Concept inclusions and concept equivalences form the TBox, and the
TBox and the ABox form the knowledge base O. An interpretation I satisfies
a concept assertion C(a) if aI ∈ CI , a role assertion r(a1, a2) if (aI1, a

I
2) ∈ rI ,

a concept inclusion C1 v C2 if CI1 ⊆ CI2 , and a concept equivalence C1 ≡ C2

if CI1 = CI2 . An interpretation that satisfies all axioms of a knowledge base O
is called a model of O. A concept C is called satisfiable with respect to O if O
has a model I in which CI 6= ∅. ALC is a decidable logic, and reasoning under
ALC is ExpTime-complete [3].
ALC can be extended in several ways, and one common extension is the

addition of role inclusion axioms in the TBox. Since we use role inclusions
in the running example, we recall them here as well. A role inclusion is an
axiom of the form r v s that states that role r is subsumed by the role s.
A role composition axiom is of the form r ◦ s v t, and it states that role t
subsumes the composition of roles r and s. An interpretation I satisfies a
role inclusion r v s if rI v sI and a role composition axiom r ◦ s v t if
∀a1, a2, a3 ∈ ∆I : (a1, a2) ∈ rI ∧ (a2, a3) ∈ sI → (a1, a3) ∈ tI . Note that
role compositions can be used to express transitivity of roles and left-and right-
identity roles.
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Example 2. Consider the online store scenario of Example 1. The following
axioms and assertions could be part of the ontology that the store uses:8

CD v ∃HasPiece.Piece (1)
Piece v ∃HasArtist.Artist (2)

HasPiece ◦HasArtist v HasArtist (3)
TopSeller tOnOffer v Recommend (4)

HasPiece(BNAW, BlueTrain) (5)
HasArtist(BlueTrain, JohnColtrane) (6)

Axiom (1) states that each CD consists of at least one piece, and axiom (2)
expresses that each piece of music has an artist. The role composition axiom (3)
states that if x is related to y by HasPiece and y is related to z by HasArtist,
then x is related to z by HasArtist, i.e. HasArtist is a left-identity role. (1)–(3)
alone allow us to derive, e.g., that the artist of a piece on a certain CD is an artist
of that CD. Note that this conclusion can be drawn without any present CDs,
artists or pieces of music, as intended when reasoning with schema knowledge in
an infinite domain. Of course, once specific information is available (assertions
5 and 6), we are able to derive, e.g., that John Coltrane is an artist of the
album BNAW, and likewise for all the other artists on that CD not explicitly
mentioned in the example.

Axiom (4) expresses one general guideline for recommendations: CDs that
are on offer or top sellers are automatically recommended to the customers. �

2.2. Logics of Minimal Knowledge and Negation as Failure
The logic of minimal knowledge and negation as failure (MKNF) [46] extends

first-order logic with two modal operators K and not that inspect the knowledge
base: intuitively, given a first-order formula ϕ, K ϕ asks whether ϕ is known
while notϕ is used to check whether ϕ is not known. The two modal operators
permit local closed world reasoning. In particular, the operator not allows one
to draw conclusions from the absence of information, in a way similar to that of
default negation in Logic Programming. We present below the syntax and the
semantics of MKNF as introduced in [51, 52].

Let Σ = (Σc,Σf ,Σp) be a first-order signature, where Σc is a set of constants,
Σf is a set of function symbols, and Σp is a set of predicates containing the binary
equality predicate ≈. The syntax of MKNF formulas over Σ is defined as follows.
A first-order atom P (t1, . . . , tn) is an MKNF formula where P is a predicate

8In these axioms, and throughout the paper, we adopt the convention that names starting
with a capital letter represent concepts and roles (termed DL-atoms as defined later in the
paper), while names starting with a lower case letter represent variables and predicates not
appearing in the ontology (that will be called non-DL-atoms as defined later in the paper).
In general, names of individuals/objects also start with a lower case letter. We only make an
exception for the names in our running example as these are usually proper names.
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and ti are first-order terms. If ϕ is an MKNF formula, then ¬ϕ, ∃x : ϕ, K ϕ,
and not ϕ are MKNF formulas and likewise ϕ1 ∧ ϕ2 for MKNF formulas ϕ1,
ϕ2. Moreover, ϕ1 ∨ ϕ2, ϕ1 ⊃ ϕ2, ϕ1 ≡ ϕ2, ∀x : ϕ, t, f , t1 ≈ t2, and t1 6≈ t2 are
abbreviations, respectively, for ¬(¬ϕ1 ∧¬ϕ2), ¬ϕ1 ∨ϕ2, (ϕ1 ⊃ ϕ2)∧ (ϕ2 ⊃ ϕ1),
¬(∃x : ¬ϕ), a ∨ ¬a, a ∧ ¬a, ≈ (t1, t2), and ¬(t1 ≈ t2). First-order atoms
of the form t1 ≈ t2 (resp. t1 6≈ t2) are called equalities (resp. inequalities),
and ϕ[t1/x1, . . . , tn/xn] denotes the formula obtained by substituting the free
variables xi in ϕ (i.e. the variables that are not in the scope of any quantifier) by
the terms ti. Given a (first-order) formula ϕ, Kϕ is called a modal K-atom and
notϕ a modal not-atom; modal K-atoms and not-atoms are modal atoms. An
MKNF formula ϕ is called strict, if there is no modal atom in ϕ that occurs in
the scope of a modal operator. An MKNF formula ϕ without any free variables
is closed, and an MKNF formula ϕ is ground if ϕ does not contain variables
at all. An MKNF formula ϕ is modally closed if all modal operators (K and
not) are applied in ϕ only to closed subformulas, and ϕ is positive if ϕ does not
contain the operator not. An MKNF formula ϕ is subjective if all first-order
atoms of ϕ occur within the scope of a modal operator, and ϕ is flat if ϕ is
subjective and all occurrences of modal atoms in ϕ are strict.

Let Σ be a signature and ∆ a universe. A first-order interpretation I over Σ
and ∆ assigns an object aI ∈ ∆ to each constant a ∈ Σc, a function f I : ∆n → ∆
to each n-ary function symbol f ∈ Σf , and a relation P I ⊆ ∆n to each n-ary
predicate P ∈ Σp. Furthermore, I interprets the predicate ≈ as equality – i.e.,
for α, β ∈ ∆, we have (α, β) ∈ ≈I iff α = β. Unlike in standard first-order logic,
for each element α ∈ Σ, the signature Σ is required to contain a special constant
nα – called a name – such that nIα = α. The interpretation of a variable-free
term t = f(s1, . . . , sn) is defined recursively as tI = f I(sI1, . . . , s

I
n).

The semantics of an MKNF formula over a signature Σ (henceforth consid-
ered implicit in all definitions) is defined as follows. An MKNF structure is a
triple (I,M,N) where I is a first-order interpretation over ∆ and Σ, and M
and N are nonempty sets of first-order interpretations over ∆ and Σ. Given an
MKNF structure (I,M,N), satisfiability of closed MKNF formulas is defined as
follows:

(I,M,N) |= P (t1, . . . , tn) iff (tI1, . . . , t
I
n) ∈ P I

(I,M,N) |= ¬ϕ iff (I,M,N) 6|= ϕ
(I,M,N) |= ϕ1 ∧ ϕ2 iff (I,M,N) |= ϕ1 and (I,M,N) |= ϕ2

(I,M,N) |= ∃x : ϕ iff (I,M,N) |= ϕ[nα/x] for some α ∈ ∆
(I,M,N) |= Kϕ iff (J,M,N) |= ϕ for all J ∈M
(I,M,N) |= notϕ iff (J,M,N) 6|= ϕ for some J ∈ N

Note that the evaluation of K and not are kept separate in this definition of
satisfiability. The relation between these operators is established in the notion
of a two-valued MKNF model defined below.

An MKNF interpretation M over a universe ∆ is a nonempty set of first-
order interpretations. For a closed MKNF formula ϕ, we say that M satisfies ϕ,
written M |= ϕ, if (I,M,M) |= ϕ for each I ∈ M . The notion of a two-valued
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MKNF model of a closed MKNF formula ϕ is based on a preference relation on
MKNF interpretations that satisfy ϕ. More precisely, an MKNF interpretation
M over ∆ is a two-valued MKNF model of a closed MKNF formula ϕ if (1) M
satisfies ϕ, and (2) for each MKNF interpretation M ′ such that M ′ ⊃M we have
(I ′,M ′,M) 6|= ϕ for some I ′ ∈ M ′. An MKNF formula ϕ is MKNF satisfiable
if a two-valued MKNF model of ϕ exists; otherwise ϕ is MKNF unsatisfiable.
Furthermore, ϕ MKNF entails ψ, written ϕ |=MKNF ψ, if M |= ψ for each
two-valued MKNF model M of ϕ.

Note that this definition of model is asymmetric in the treatment of the
modal operators K and not. In fact, the maximisation of M in (2) is only done
in the component of the structure used for evaluating the operator K. This
results in a minimisation of the derivable K-atoms in any two-valued MKNF
model of a given formula ϕ.

Example 3. Though M = {{p}} satisfies both K p and ¬not p, M is only a
two-valued MKNF model of the first formula. M is not a two-valued MKNF
model of the second one since (I ′,M ′,M) |= ¬not p holds for any M ′ with
M ′ ⊃M . �

The MKNF semantics, as originally defined in [46], shows certain undesirable
properties such as counterintuitive semantics caused by the usage of arbitrary
universes and the differing interpretation of constants in different interpreta-
tions. To overcome these problems, [52] additionally applies the standard name
assumption to hybrid MKNF knowledge bases. We briefly recall two such prob-
lems from [52] and the notion of standard names assumption introduced to
overcome them, and we refer for the complete discussion to [52].

One problem when using MKNF as in [46] for the integration of rules and
ontologies is the usage of arbitrary universes. Consider the MKNF formula
ϕ = ϕ1 ∧ϕ2, where ϕ1 = KP (a) and ϕ2 = notP (b) ⊃ f . Intuitively, one would
not expect that ϕ is satisfiable since there is no indication that P (b) should
be true. However, if the universe contains only one element, then a and b are
interpreted as the same object, and ϕ is satisfied. In this case one unintendedly
derives that ϕ |= a ≈ b holds.

Another problem is caused by constants that are interpreted differently in
different interpretations. Consider ϕ1 = K P (a) and ϕ2 = ∃x : K P (x). In
this case one would expect that ϕ1 |= ϕ2, that is, every two-valued MKNF
model of ϕ1 is also a two-valued MKNF model of ϕ2. However, let M be an
MKNF interpretation containing two elements I1 and I2 where I1 is a first-order
interpretation in which a is interpreted as a name α1 and I1 |= P (α1), and I2
is a first-order interpretation in which a is interpreted as some other name α2

and I2 |= P (α2). We thus have that M |= ϕ1 but not M |= ϕ2 since this would
require to have an x in the domain such that P (x) is true in all I ∈M .

To avoid such unintended behaviour, the standard name assumption is im-
posed on top of MKNF.

Definition 1. (Standard Name Assumption [52]). A first-order interpretation
I over a signature Σ employs the standard name assumption if
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(1) the universe ∆ of I contains all constants of Σ and a countably infinite
number of additional constants called parameters;

(2) tI = t for each ground term t constructed using the function symbols from
Σ and the constants from ∆; and

(3) the predicate ≈ is interpreted in I as a congruence relation – that is, ≈ is
reflexive, symmetric, transitive, and allows for the replacement of equals
by equals [18].

Consequences of first-order formulas under the standard first-order semantics
and the standard name assumption cannot be distinguished [52]. Thus, in the
rest of the paper we use the standard name assumption for first-order inferences.

2.3. Hybrid MKNF Knowledge Bases
Hybrid MKNF knowledge bases as introduced in [51, 52]9 essentially are

MKNF formulas restricted to a certain form. They consist of two components:
a decidable description logic knowledge base translatable into first-order logic
and a finite set of rules of modal atoms.

More precisely, the approach of hybrid MKNF knowledge bases is applicable
to any first-order fragment DL satisfying the following conditions: (i) each
knowledge base O ∈ DL can be translated10 into a formula π(O) of function-
free first-order logic with equality; (ii) DL supports A-Box -assertions of the
form P (a1, . . . , an), where P is a predicate and each ai a constant of DL; and
(iii) satisfiability checking and instance checking (i.e. checking entailments of
the form O |= P (a1, . . . , an)) are decidable. In particular, description logics
around OWL satisfy these conditions. Note that we limit ourselves to function-
free first-order logic since otherwise decidability would not be possible. Thus
for the rest of the paper, we will not allow function symbols in hybrid MKNF
knowledge bases.

We recall MKNF rules and hybrid MKNF knowledge bases from [51].

Definition 2. Let O be a DL knowledge base. A function-free first-order atom
P (t1, . . . , tn) over Σ such that P is ≈ or occurs in O is called a DL-atom; all
other atoms are called non-DL-atoms. An MKNF rule r has the following form
where Hi, Ai, and Bi are function free first-order atoms:

KH1 ∨ . . . ∨KHl ← KA1, . . . ,KAn,notB1, . . . ,notBm (7)

The sets {KHi}, {KAi}, and {notBi} are called the rule head, the positive
body, and the negative body, respectively. A rule r is nondisjunctive if l = 1;
r is positive if m = 0; r is a fact if n = m = 0. A program P is a finite set
of MKNF rules. A hybrid MKNF knowledge base K is a pair (O,P) and K is
nondisjunctive if all rules in P are nondisjunctive.

9We focus here on the presentation as in [51], and we thus omit classical negation and
arbitrary first-order formulas in rules as presented in [52].

10See [3] for standard translations of Description Logic axioms.
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Hybrid MKNF knowledge bases rules11, as defined above, do not coincide
syntactically with any MKNF formula. For interpreting hybrid MKNF knowl-
edge bases in terms of MKNF logic, the transformation π that transforms a DL
ontology into first-order formulas is extended to knowledge bases as follows:

Definition 3. Let K = (O,P) be a hybrid MKNF knowledge base. We extend
π to rules r of the form (7), P, and K as follows, where ~x is the vector of the
free variables of r.

π(r) = ∀~x : (KH1 ∨ . . . ∨KHl ⊂ KA1 ∧ . . . ∧KAn ∧ notB1 ∧ . . . ∧ notBm)

π(P) =
∧
r∈P

π(r) π(K) = Kπ(O) ∧ π(P)

To simplify the presentation, we will abuse notation in the rest of the paper and
identify K with π(K). It will be obvious from the context when K represents its
first-order transformation π(K).

Hybrid MKNF knowledge bases, even without function symbols, are in gen-
eral undecidable, unless they are restricted in some way. The reason for that is
that rules can be applied to all the objects in the infinite domain. The basic idea
to make reasoning with hybrid MKNF knowledge bases decidable is to apply
rules only to the individuals that appear in the knowledge base. This restriction
is achieved by DL-safety.

Definition 4. An MKNF rule r is DL-safe if every variable in r occurs in
at least one non-DL-atom K B occurring in the body of r. A hybrid MKNF
knowledge base K is DL-safe if all the rules in K are DL-safe.

In the rest of the paper, unless otherwise stated, we only consider DL-safe
knowledge bases.

Grounding the knowledge base, as defined below, ensures that rules apply
to all the individuals appearing in the knowledge base, whereas DL-safety guar-
antees that no other individual can be used.

Definition 5. Given a hybrid MKNF knowledge base K = (O,P), the ground
instantiation of K is the KB KG = (O,PG) where PG is obtained from P by
replacing each rule r of P with a set of rules substituting each variable in r with
constants from K in all possible ways.

It was shown in [52] that, for a DL-safe hybrid knowledge base K, the two-valued
MKNF models of K and KG coincide.

Example 4. Consider again the scenario of Example 1, together with the ax-
ioms and assertions of Example 2. These axioms can be part of an ontology O

11As mentioned before, our main results only apply to nondisjunctive rules, i.e. l = 1 for
each rule of the form (7). However, to keep to the original definition of [52], we present the
definition of the more general form of MKNF rules.
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of a hybrid MKNF knowledge base K = (O,P). In P we can encode further
recommendation guidelines, in particular those that require closed world rea-
soning. For example, imagine that we want to give customers recommendations
for interesting CDs they do not own and that do not have a low evaluation.
This can be encoded with the rules shown below:12

K Recommend(x) ← K CD(x),not owns(x),not LowEval(x),
K interesting(x). (8)

K interesting(x) ← K CD(x),K CD(y),K owns(y),not owns(x),
K similar(x, y). (9)

K similar(x, y) ← K CD(x),K CD(y),K Artist(z),
K HasArtist(x, z),K HasArtist(y, z). (10)

K owns(EnConcert) ← (11)
K HasArtist(EnConcert,JackJohnson) ← (12)
K HasArtist(ToTheSea,JackJohnson) ← (13)

K OnOffer(BNAW) ← (14)

Note that closed world reasoning is used for owns and lowEval. In the case
of predicate owns, it is reasonable to assume that the knowledge about owned
CDs is fully available. So, if there is no fact stating that a given CD is owned,
one should assume that the CD is not owned. In the case of predicate lowEval
it might happen that there is no evaluation yet available, and we want the
recommendation anyway: a CD is not considered for recommendation only when
there actually is a (known) low evaluation for the CD. Such an evaluation could
be taken from other customers of the store or from a web page of professional
reviews. Here, for simplicity, we keep this part of the reasoning process implicit.

Moreover, in the rules above, a CD is interesting if the customer owns another
CD which is similar (9), and two CDs are similar if they have a common artist
(10). Note that the predicate CD is used to ensure DL-safety, and we assume
that the instances of that predicate relevant to any drawn conclusion are always
appropriately defined.

If we now add facts (11)–(14), then we can derive Recommend(ToTheSea),
since no low evaluation is known for ToTheSea, and Recommend(BNAW) since
BNAW is on offer.

This example illustrates that hybrid MKNF knowledge bases allow us to
obtain consequences for predicates that are ‘defined’ both in the ontology and

12In this encoding, for simplicity, we consider that the program part of the knowledge base
is specific to each customer. This avoids an explicit representation of several customers, of
the relation stating which CDs are owned by each customer, etc.
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in the rules. The result may then be further applied to derive subsequent con-
sequences either in rules or in the ontology. Note that the facts (12) and (13)
are here explicitly added, representing the implicit consequences derivable from
the appropriate ontology alone, similar to HasArtist(BNAW,JohnColtrane) in
Example 2. �

In [52], several reasoning algorithms were provided for combinations of ar-
bitrary description logic fragments and rules of differing expressivity. Table 1
presents the data complexity of instance checking for combinations of nondis-
junctive rules (with arbitrary or stratified13 negation or without not in the
rules) with description logics fragments of differing computational complexity.
We point out that allowing arbitrary nonmonotonic negation increases data
complexity drastically and in particular beyond tractability. This is not the
case of the rules in Example 4, since these are stratified. However, this is just
an initial set of rules for our running example, which is further elaborated below
and becomes non-stratified (e.g., the addition of rule 17 in Example 8 renders
the set of rules non-stratified). With the proposal we present in the following
sections these sets of non-stratified rules do not constitute a problem regarding
complexity.

rules DL = ∅ DL ∈ P DL ∈ coNP
definite P P coNP

stratified P P ∆p
2

normal coNP coNP Πp
2

Table 1: Data complexity of instance checking in MKNF

3. Three-valued MKNF Semantics

In this section we introduce a three-valued semantics for hybrid MKNF
knowledge bases. The rationale and the main goal behind this three-valued
semantics is to define a semantics that is closely related to the well-founded se-
mantics of logic programs. This is done in order to take advantage of the (data)
complexity of the WFS that is lower than the (data) complexity of the corre-
sponding two-valued semantics. Nevertheless, the DL-part of a hybrid MKNF
knowledge base is still interpreted under the two-valued semantics. Thus, we
achieve a faithful integration, in the sense that without rules the meaning of the
knowledge base exactly coincides with the usual semantics from DLs.

The definition of the three-valued semantics presented in this section applies
equally with or without the standard name assumption. However, since we want
to achieve a semantics that is faithful w.r.t. the two-valued MKNF semantics as
presented in Section 2, we assume standard name assumption.

13Essentially, rules can be separated into strata that can be evaluated separately – see
Section 4.4 in [52].
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3.1. Evaluation in MKNF Structures
The two-valued hybrid MKNF semantics [52] is closely related (cf. [46]) to

the stable models semantics [19]. In both of them, the meaning of a knowledge
base is determined by a set of models. In fact, an MKNF formula such as
ϕ = ((notp ⊃ Kq∧ (notq ⊃ Kp)) (and the corresponding set of rules) has two
models – one model in which p is true and q is false, and another one in which p is
false and q is true. Moreover, these two-valued models are, in general, obtained
by a guess and check process, thus having a high computational complexity.

The well-founded semantics of logic programs [62] generalises the two-valued
models of the stable model semantics to a three-valued setting. In this way, it
is possible to determine the meaning of a knowledge base solely on the basis of
a single (minimal) model that is obtained with a lower computational complex-
ity. Intuitively, a third truth value u, denoting undefined, is introduced as an
alternative to the values t and f , enabling one to delay the evaluation to any of
the two latter values until further information is available. We want to follow
this idea when defining a three-valued MKNF semantics. There is however one
more problem to be taken into account: since we are interested in applying the
semantics to hybrid MKNF knowledge bases containing two-valued ontologies,
which we want to integrate faithfully, we are going to define the semantics in
such a way that an MKNF formula corresponding to a DL fragment is ensured
to be just two-valued.

We therefore define a three-valued MKNF semantics that extends the two-
valued semantics of [52], but remains two-valued for the case of MKNF formulas
without modal operators. We start by defining MKNF structures for this three-
valued setting.

Definition 6. A three-valued (partial) MKNF structure (I,M,N ) consists of
a first-order interpretation I and two pairs M = 〈M,M1〉 and N = 〈N,N1〉
of sets of first-order interpretations where M1 ⊆ M and N1 ⊆ N . An MKNF
structure is called total if M = 〈M,M〉 and N = 〈N,N〉.

In the two-valued semantics, an MKNF structure (I,M,N) contains sets of
interpretations M and N for evaluating a modal atom Kϕ, respectively notϕ,
to t or f , depending on whether ϕ is contained in all elements of M , respectively
N . This clearly leaves no space for an extension to a third truth value u. So,
we turn sets of interpretations into pairs of sets of interpretations. Then, as we
show below, a modal atom Kϕ is true w.r.t. 〈M,M1〉 if ϕ is true in all elements
of M ; a modal atom Kϕ is false if ϕ is not true in all elements of M1; a modal
atom K ϕ is undefined otherwise (i.e. if ϕ is true in all elements of M1). The
additional restrictions, saying that M1 ⊆M and N1 ⊆ N , are needed to ensure
that no modal atom can be both true and false at the same time, and it can
easily be shown via induction that the same holds for any MKNF formula ϕ. In
this way, we guarantee that no fourth truth value ‘both’ is needed. Nevertheless,
given an MKNF formula ϕ, three-valued MKNF structures may evaluate K ϕ
and notϕ to true at the same time, just like in the two-valued case, and we show
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below how to prevent this from happening when defining MKNF interpretation
pairs.

We now define the evaluation of closed MKNF formulas in such three-valued
MKNF structures.

Definition 7. Let (I,M,N ) be a three-valued MKNF structure and {t,u, f}
the set of truth values with the order f < u < t, where the operator max (resp.
min) chooses the greatest (resp. least) element with respect to this ordering.
We define:

• (I,M,N )(P (t1, . . . , tn)) =
{

t iff (tI1, . . . , t
I
n) ∈ P I

f iff (tI1, . . . , t
I
n) 6∈ P I

• (I,M,N )(¬ϕ) =

 t iff (I,M,N )(ϕ) = f
u iff (I,M,N )(ϕ) = u
f iff (I,M,N )(ϕ) = t

• (I,M,N )(ϕ1 ∧ ϕ2) = min{(I,M,N )(ϕ1), (I,M,N )(ϕ2)}

• (I,M,N )(ϕ1 ⊃ ϕ2) = t iff (I,M,N )(ϕ2) ≥ (I,M,N )(ϕ1) and f otherwise

• (I,M,N )(∃x : ϕ) = max{(I,M,N )(ϕ[α/x]) | α ∈ ∆}

• (I,M,N )(Kϕ) =

 t iff (J, 〈M,M1〉,N )(ϕ) = t for all J ∈M
f iff (J, 〈M,M1〉,N )(ϕ) = f for some J ∈M1

u otherwise

• (I,M,N )(notϕ) =

 t iff (J,M, 〈N,N1〉)(ϕ) = f for some J ∈ N1

f iff (J,M, 〈N,N1〉)(ϕ) = t for all J ∈ N
u otherwise

As intended, this evaluation is not a purely three-valued one, since first-
order atoms are evaluated as in the two-valued case. In fact, an MKNF formula
ϕ without modal operators (and thus also a pure description logic knowledge
base) is only two-valued. It can easily be seen that such a ϕ is evaluated in
exactly the same way as in the scheme presented in Section 2. This is desired in
particular when the knowledge base consists just of the DL part. So, the third
truth value only affects MKNF formulas containing modal atoms, which in the
case of hybrid MKNF knowledge bases can only occur in the rules. These rules,
corresponding to implications, are, however, no longer interpreted in a way one
would expect from a boolean perspective: u ⊃ u is true in the evaluation defined
above, while u ∨ ¬u is actually undefined. The reason for this change is that,
in this way rules can only be true or false, similarly to what happens in logic
programming, even when they contain undefined modal atoms. Intuitively, the
advantage for hybrid MKNF knowledge bases is that we can leave single modal
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atoms undefined, thus not necessarily having to create several models, while the
entire knowledge base is only true or false.

We point out that the evaluation of not w.r.t. 〈N,N1〉 is symmetrical to
the evaluation of K w.r.t. 〈M,M1〉, only that the conditions are switched. E.g.,
the condition for true modal K-atoms w.r.t. M yields false modal not-atoms
w.r.t. N . In case of M = N and M1 = N1 this corresponds to the two-valued
(monotonic) evaluation in Section 2.

3.2. Three-valued MKNF Models
Given the above definition of evaluation of MKNF formulas, we are now

ready to extend (two-valued) MKNF interpretations and MKNF models to three
truth values. For that purpose, we have to generalize (two-valued) MKNF
interpretations M to pairs of MKNF interpretations (M,N), since otherwise no
formula could ever be undefined.

Definition 8. An MKNF interpretation pair (M,N) consists of two MKNF
interpretations M , N with ∅ ⊂ N ⊆M . An MKNF interpretation pair satisfies
a closed MKNF formula ϕ, written (M,N) |= ϕ, if and only if

(I, 〈M,N〉, 〈M,N〉)(ϕ) = t

for each I ∈ M . If M = N , then the MKNF interpretation pair (M,N) is
called total. If there exists an MKNF interpretation pair satisfying ϕ, then ϕ is
consistent.

The setM contains all interpretations that model only truth, whileN models
everything that is true or undefined. Evidently, just as in the two-valued case,
anything not being modelled in N is false. The subset relation between M and
N ensures that MKNF interpretation pairs are defined in accordance with the
three-valued MKNF structures, so that each formula is evaluated to exactly one
truth value. Note the striking similarity compared to MKNF interpretations in
the two-valued case by using the MKNF interpretation pair (M,N) to evaluate
both K and not simultaneously.

We now define the preference relation on MKNF interpretation pairs that is
required for the notion of (nonmonotonic) three-valued MKNF models, following
an approach similar to the one in the two-valued case – i.e. by minimising non-
falsity (truth or undefinedness, in this case) of formulas w.r.t. K.

Definition 9. Any MKNF interpretation pair (M,N) is a three-valued MKNF
model for a given closed MKNF formula ϕ if

(1) (M,N) satisfies ϕ and

(2) for each MKNF interpretation pair (M ′, N ′) with M ⊆ M ′ and N ⊆ N ′,
where at least one of the inclusions is proper and M ′ = N ′ if M = N ,
there is I ′ ∈M ′ such that (I ′, 〈M ′, N ′〉, 〈M,N〉)(ϕ) 6= t.
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Condition (1) checks whether (M,N) evaluates ϕ to t while the second condition
verifies that (M,N) contains only knowledge necessary to obtain this evaluation
to t. This is achieved by generalising the corresponding notion in the two-valued
MKNF semantics to the three-valued case: for each MKNF interpretation pair
(M ′, N ′) that properly subsumes (M,N), it is checked that ϕ does not evaluate
to t for all I ′ ∈M ′, where (M ′, N ′) is used to evaluate K while (M,N) evaluates
not. Intuitively, one may consider an MKNF interpretation pair as a guess for
the true evaluation of the considered formula, and condition (2) checks, having
fixed the evaluation of modal not-atoms, whether the evaluation of modal K-
atoms is actually minimal w.r.t. to the order f < u < t of truth values. We
illustrate in the example below how this minimisation is achieved.

Example 5. Consider the MKNF formula ϕ (corresponding to two rules):

(not p ⊃ K q) ∧ (not q ⊃ K p)

An MKNF interpretation pair (M,N) that satisfies condition (1) of Defini-
tion 9 has to evaluate both conjuncts to true. The MKNF interpretation
pair ({{p}, {p, q}}, {{p, q}}) that evaluates K p to t and K q to u satisfies
the first condition but is not a three-valued MKNF model of ϕ since, e.g.,
(M ′, N ′) = ({∅, {p}, {q}, {p, q}}, {{p, q}}) violates condition (2). In fact, this
MKNF interpretation pair (M ′, N ′) is a three-valued MKNF model. The oper-
ator not is always evaluated w.r.t. the MKNF interpretation pair (M,N), even
when considering condition (2) of Definition 9, so, for N = {{p, q}}, the two
implications are true anyway, and M has to be the set of all possible interpre-
tations {∅, {p}, {q}, {p, q}} to satisfy condition (2). Thus, we obtain the MKNF
interpretation pair that evaluates K p and K q to u. In other words, the ini-
tial MKNF interpretation pair was not minimal w.r.t. the evaluation of modal
K-atoms. Similar to the minimisation of the evaluation of K p from t to u,
changes from u to f are possible: maintain the original M = {{p}, {p, q}} and
set N = M . Now the evaluation of K q is minimised from u to f , and it is easy
to verify that the resulting MKNF interpretation pair is in fact a three-valued
MKNF model of ϕ. �

It should be pointed out that the larger the set M or N is, the less true or unde-
fined knowledge is inferred. So, minimisation is achieved by increasing the sets
in consideration. Note that N ′ ⊆ M ′ for MKNF interpretation pairs (M ′, N ′)
ensures that we only check reasonable candidates for augmenting (M,N).14

We now adapt some notions needed in the rest of the paper from the two-
valued MKNF semantics to the three-valued setting.

14In comparison to [37] the definition has been slightly altered to simplify proofs and com-
putation: in case of a total MKNF interpretation pair (M, M), it is sufficient to check that
no other total MKNF interpretation pair (M ′, M ′) actually yields a true evaluation for all
I′ ∈ M ′. This simplification is also justified by the intuition of enlarging N ′ separately: there
is no undefinedness in a total MKNF interpretation pair, and minimisation of undefinedness
is thus not necessary.
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Definition 10. If there is a three-valued MKNF model for a given closed
MKNF formula ϕ, then ϕ is called MKNF-consistent, otherwise ϕ is called
MKNF-inconsistent. If (I, 〈M,N〉, 〈M,N〉)(ψ) = t for all three-valued MKNF
models (M,N) of ϕ, then ϕ entails ψ, written ϕ |=3

MKNF ψ.

Note that MKNF-inconsistent MKNF formulas do not necessarily evaluate
to f . For example, ϕ = Ku∧notu evaluates to u for the MKNF interpretation
pair ({{u}, ∅}, {{u}}). In fact, an MKNF-inconsistent formula can even evaluate
to t and that was already the case for the two-valued MKNF semantics of [52].
E.g., ϕ = ¬not p is MKNF-inconsistent, and it evaluates to t in some MKNF
interpretation pairs (and also in some MKNF interpretations of [52]). This does
not constitute a problem since it does not affect the definitions of MKNF models
or MKNF-consistency.

Though the notions of inconsistency and unsatisfiability are usually applied
in the same technical sense, we want to distinguish between MKNF-satisfiability
in the two-valued case and MKNF-consistency for three-valued MKNF models.
Likewise, we distinguish between the two-valued notion ‘MKNF entails’ and the
three-valued ‘entails’.

In spite of keeping the notions separate, two- and three-valued MKNF models
are closely related: we now show that any two-valued MKNF model M corre-
sponds exactly to a (total) three-valued one and vice versa. For that purpose,
we first prove that evaluation in an MKNF structure (I,M,N) and evaluation
in a total three-valued structure (I, 〈M,M〉, 〈N,N〉) are identical. Intuitively,
this holds because nothing can be undefined in a total three-valued structure.

Lemma 1. Given a closed MKNF formula ϕ, (I,M,N) |= ϕ if and only if
(I, 〈M,M〉, 〈N,N〉)(ϕ) = t.

Proof. The proof is done by induction on the formula ϕ.
Let ϕ be P (t1, . . . , tn). We have (I,M,N) |= P (t1, . . . , tn) iff (tI1, . . . , t

I
n) ∈

P I iff (I, 〈M,M〉, 〈N,N〉)(P (t1, . . . , tn)) = t.
Assume that the lemma holds for ϕ1. We show the induction steps for ¬

and K, all the other cases follow analogously.
Let ϕ be ¬ϕ1. We have that (I,M,N) |= ¬ϕ1 iff (I,M,N) 6|= ϕ1 iff, by the

induction hypothesis, (I, 〈M,M〉, 〈N,N〉)(ϕ1) = f iff by definition of evaluation
in partial structures (I, 〈M,M〉, 〈N,N〉)(¬ϕ1) = t.

Let ϕ be Kϕ1. We have (I,M,N) |= Kϕ1 iff (I,M,N) |= ϕ1 holds for each
I ∈M iff (I, 〈M,M〉, 〈N,N〉)(ϕ1) = t for all I ∈M by the induction hypothesis
iff (I, 〈M,M〉, 〈N,N〉)(Kϕ1) = t. �

This lemma can be used to show that every two-valued MKNF model M
corresponds to a three-valued MKNF model (M,M), like in [36], and also the
converse, i.e. that every three-valued MKNF model (M,M) corresponds to a
two-valued MKNF model in the sense of [52].

Proposition 1. Given a closed MKNF formula ϕ, M is a two-valued MKNF
model of ϕ if and only if (M,M) is a three-valued MKNF model of ϕ.
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Proof. Let (M,M) be a three-valued MKNF model of ϕ, i.e. (M,M) sat-
isfies the two conditions of Definition 9. We show that M is a two-valued
MKNF model of ϕ. It follows from the first of the two conditions of Def-
inition 9 that (I, 〈M,M〉, 〈M,M〉)(ϕ) = t for all I ∈ M and therefore, by
Lemma 1, that (I,M,M) |= ϕ for each I ∈ M . The second condition states,
for each MKNF interpretation pair (M ′,M ′) with M ⊂ M ′, that we have
(I ′, 〈M ′,M ′〉, 〈M,M〉)(ϕ) 6= t for some I ′ ∈ M ′. We conclude from Lemma
1 that for any M ′ with M ′ ⊃M there is an I ′ ∈M ′ such that (I ′,M ′,M) 6|= ϕ.

Now, let M be a two-valued MKNF model of ϕ. We show that (M,M) is a
three-valued MKNF model of ϕ. We know that (I,M,M) |= ϕ for each I ∈M
since M is a two-valued MKNF model of ϕ. As such, (I, 〈M,M〉, 〈M,M〉)(ϕ) =
t holds for all I ∈ M by Lemma 1, and so the first of the two conditions of
Definition 9 is satisfied. Furthermore, since M is a two-valued MKNF model of
ϕ, we know that for all M ′ with M ′ ⊃ M we have (I ′,M ′,M) 6|= ϕ for some
I ′ ∈ M ′. Again, from Lemma 1, we know that for any MKNF interpretation
pair (M ′,M ′) with M ′ ⊃ M we have (I ′, 〈M ′,M ′〉, 〈M,M〉)(ϕ) 6= t for some
I ′ ∈ M ′. This is sufficient since, according to Definition 9, for (M,M) we only
need to consider total MKNF interpretation pairs (M ′,M ′). �

MKNF interpretation pairs can be compared by an order that resembles the
knowledge order from logic programming. Intuitively, given such an order and
two MKNF interpretation pairs (M1, N1) and (M2, N2), we have that (M1, N1)
is greater than (M2, N2) w.r.t. such an order if (M1, N1) allows us to derive more
true and false knowledge than (M2, N2). Taking into account that a larger set
of interpretations derives less true and more false knowledge, we can define the
following order on MKNF interpretation pairs.

Definition 11. Let (M1, N1) and (M2, N2) be MKNF interpretation pairs. We
have that (M1, N1) �k (M2, N2) iff M1 ⊆M2 and N1 ⊇ N2.

Such an order is of particular interest for comparing models. In logic program-
ming the least model w.r.t. derviable knowledge among all three-valued models
for a given program is the well-founded model. Here, we want to introduce a
similar notion referring to the minimal three-valued MKNF models, i.e. the ones
among all three-valued MKNF models that leave as much as possible undefined.

Definition 12. Let ϕ be a closed MKNF formula and (M,N) a partial MKNF
model of ϕ such that (M1, N1) �k (M,N) for all three-valued MKNF models
(M1, N1) of ϕ. Then (M,N) is a well-founded MKNF model of ϕ.

Of course, if ϕ is inconsistent, then there are no three-valued MKNF models
and thus no well-founded MKNF models of ϕ. However, if ϕ is a consistent
hybrid MKNF knowledge base, it is guaranteed that a well-founded MKNF
model of ϕ exists. Moreover, this well-founded model is unique. As we shall see,
this model is especially important in that a modal atom KH is true in the well-
founded MKNF model iff KH is true in all three-valued MKNF models. This
way, performing skeptical reasoning in three-valued MKNF models amounts to
determining the well-founded MKNF model.
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Theorem 1. If K is an MKNF-consistent nondisjunctive DL-safe hybrid MKNF
KB, then a well-founded MKNF model exists, and it is unique.

The respective proofs for the uniqueness/existence of the well-founded MKNF
model, and how to calculate this unique model, are presented in Section 4 (as
a direct consequence of Theorem 5). The following example gives at least an
intuitive insight into the correspondence between two-valued and three-valued
MKNF models, and the well-founded MKNF model.

Example 6. Consider the knowledge base K corresponding to the MKNF for-
mula ϕ from Example 5.

K q ← not p

K p ← not q

The two-valued MKNF models of K are {{p}, {p, q}} and {{q}, {p, q}}, i.e. Kp
and notq are true in the first model, and Kq and notp are true in the second one.
We obtain two total three-valued MKNF models: ({{p}, {p, q}}, {{p}, {p, q}})
and ({{q}, {p, q}}, {{q}, {p, q}}). As we have already seen in Example 5, the only
other three-valued MKNF model of K is M = ({∅, {p}, {q}, {p, q}}, {{p, q}}).
This MKNF model satisfies the condition given in Definition 12, and M is thus
a well-founded MKNF model of K. In fact, M is the only well-founded MKNF
model. �

In the rest of this section we lift two important properties proven in [50] from
the two-valued MKNF semantics to the new three-valued MKNF semantics. The
first property states that K can be introduced in front of an arbitrary closed
MKNF formula ϕ without changing the three-valued MKNF models of ϕ.

Proposition 2. Let σ be a closed MKNF formula and (M,N) an MKNF in-
terpretation pair. Then, (M,N) is a three-valued MKNF model of σ if and only
if (M,N) is a three-valued MKNF model of K σ.

Proof. Suppose that (M,N) is a three-valued MKNF model of σ. We know
for all I ∈M that (I, 〈M,N〉, 〈M,N〉)(σ) = t. So (I, 〈M,N〉, 〈M,N〉)(Kσ) = t
holds for all I ∈ M as well. Since for each (M ′, N ′) there is an I ′ ∈ M ′ such
that (I ′, 〈M ′, N ′〉, 〈M,N〉)(σ) 6= t, we also obtain the same for Kσ, and (M,N)
is a three-valued MKNF model of K σ. The converse direction follows in an
analogous fashion. �

The second property we adapt from the two-valued to the three-valued
MKNF semantics says that grounding a hybrid MKNF knowledge base K does
not affect the three-valued MKNF models of K. This shows that K and KG
derive exactly the same consequences.

Lemma 2. Let K be a DL-safe hybrid MKNF knowledge base and ψ a ground
MKNF formula. Then K |=3

MKNF ψ if and only if KG |=3
MKNF ψ.

Proof. The argument showing the contrapositive statement K 6|=3
MKNF ψ if

and only if KG 6|=3
MKNF ψ is absolutely identical to the one in [50]. So we

simply refer to the proof given there. �
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4. The Well-Founded MKNF Model

In this section we prove that the well-founded MKNF model is unique, and
we define a procedure for computing this unique model. For that purpose,
the alternating fixpoint construction of [29, 61] for the well-founded semantics
of logic programs is adapted to hybrid MKNF knowledge bases, taking into
account possible conflicts resulting from the combination of classical negation
in ontologies and nonmonotonic negation in rules.

The well-founded semantics for logic programs, originally defined in [62],
only applies to nondisjunctive logic programs, and there is no established well-
founded semantics that allows for disjunction in the rule heads (see, e.g., [38]).
To avoid the problems encountered when extending the well-founded semantics
to disjunctive logic programs, and to be compatible with the well-founded se-
mantics of normal programs, we have to restrict to rules that are nondisjunctive.
Thus, our approach is more restrictive in the form of rules than the approach of
[52]. Note that we can partially compensate this restriction by using first-order
disjunction whenever this is available in the considered DL. Therefore, in the
rest of the paper we assume that all hybrid MKNF knowledge bases contain
only nondisjunctive rules, i.e. no disjunction occurs in the head of any rule.

We start by adapting partitions from [52] as the means of representing
MKNF interpretation pairs. Then, based on that representation, we define
operators that allow us to compute a unique model for hybrid MKNF knowl-
edge bases. We show that this model is indeed the (unique) well-founded MKNF
model, and we present several important properties including the computational
complexity, faithfulness w.r.t. the well-founded semantics of logic programs, and
discovery of inconsistencies.

4.1. Partitions of Modal Atoms
As argued in [52], since there are infinitely many two-valued MKNF models

of an arbitrary hybrid MKNF knowledge base with a countably infinite domain,
working directly with two-valued MKNF models is cumbersome. The same
holds for MKNF interpretation pairs in the three-valued semantics presented in
Section 3. So, some finite representation is required. The solution, applied in
[52] and originally from [11], is to represent a two-valued MKNF model by a
finite first-order formula whose set of (first-order) models corresponds to the two-
valued MKNF model itself. Intuitively, such a first-order formula is obtained in
[52] by first dividing the modal atoms occurring in the ground hybrid MKNF
knowledge base into true and false modal atoms, and then constructing the
first-order formula from the true modal atoms and the ontology. We extend
this construction, and the related notions from [52], to three truth values by
partitioning atoms into three sets.

Definition 13. Let KG = (O,PG) be a ground, nondisjunctive hybrid MKNF
knowledge base. The set of K-atoms of KG, written KA(KG), is the smallest set
that contains (i) all ground K-atoms occurring in PG, and (ii) a modal atom
K ξ for each ground modal atom not ξ occurring in PG. A partial partition
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(T, F ) of KA(KG) consists of two sets, where T, F ⊆ KA(KG) and T ∩F = ∅. A
third set U is implicitly defined as KA(KG) \ (T ∪ F ).

The set KA(KG) contains all modal atoms occurring in KG, only with not-atoms
substituted by corresponding modal K-atoms. This set is partitioned into three
sets T , F , and U where, intuitively, T contains true modal atoms, F contains
false modal atoms, and U contains all the remaining that are considered to be
undefined.

In [52], given a knowledge base KG, a set of first-order formulas is defined
with the aim of using the models of this set of formulas to represent the models
of both the ontology and a set of true modal atoms. If this set of true modal
atoms is properly chosen, then the set of first-order interpretations satisfying
that set of formulas corresponds to one two-valued MKNF model of KG.

Here, this construction will not suffice, and we show below how to adapt the
idea to a three-valued setting. The definition of the set of first-order formulas
can be recalled from [52].

Definition 14. Let KG = (O,PG) be a ground hybrid MKNF knowledge base.
For a subset S of KA(KG), the objective knowledge of S w.r.t. KG is the set of
first-order formulas OBO,S = {π(O)} ∪ {ξ | K ξ ∈ S}.

This notion is used below to establish a link between three-valued MKNF
models and partial partitions. But for this purpose, we need to adapt one more
notion from [52].

Definition 15. Let S be a set of ground modal K-atoms. The partial partition
(T, F ) of S is induced by an MKNF interpretation pair (M,N) as follows:

(1) K ξ ∈ T implies ∀I ∈M : (I, 〈M,N〉, 〈M,N〉)(K ξ) = t,

(2) K ξ ∈ F implies ∀I ∈M : (I, 〈M,N〉, 〈M,N〉)(K ξ) = f , and

(3) K ξ 6∈ T and K ξ 6∈ F implies ∀I ∈M : (I, 〈M,N〉, 〈M,N〉)(K ξ) = u.

Based on this relation, we can show that the objective knowledge derived
from the partial partition induced by a three-valued MKNF model is identical
to that model. This result is used below to show that the specific partition we
compute produces a three-valued MKNF model (Theorem 4).

Proposition 3. Let (M,N) be a three-valued MKNF model of a ground hybrid
MKNF knowledge base KG = (O,PG), and (T, F ) the partition of KA(KG) in-
duced by (M,N). Then (M,N) = ({I | I |= OBO,T }, {I | I |= OBO,KA(KG)\F }).

Proof. For KG = (O,PG) a ground hybrid MKNF knowledge base, let (M,N)
be a three-valued MKNF model of KG, (T, F ) the partition of KA(KG) induced
by (M,N), and (M ′, N ′) = ({I | I |= OBO,T }, {I | I |= OBO,KA(KG)\F }). We
show that (M,N) = (M ′, N ′).

First, we show that M ⊆ M ′. Let I be an interpretation in M . We show
that I ∈ M ′ = {I | I |= OBO,T }, i.e. that I |= {π(O)} ∪ {ξ | K ξ ∈ T}. Since
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(M,N) is a three-valued MKNF model of KG, we know that (M,N) |= Kπ(O).
Thus, we have I |= π(O). Consider each K ξ ∈ T . Since (M,N) induces the
partition (T, F ) we have (I, 〈M,N〉, 〈M,N〉)(K ξ) = t and thus I |= ξ. Hence,
I |= OBO,T . Consequently, I ∈M ′ holds and therefore M ⊆M ′.

Next, we show that N ⊆ N ′. Let I be an interpretation in N . We show
that I ∈ N ′ = {I | I |= OBO,KA(KG)\F }, i.e. that I |= {π(O)} ∪ {ξ | K ξ ∈
KA(KG)\F}. We already know that, for each I ∈M , I |= π(O). Since N ⊆M ,
we also have that I |= π(O) for each I ∈ N . Consider each K ξ 6∈ F . The
premise of condition (2) in Definition 15 is false, but the premises of conditions
(1) and (3) in that definition are true. We show for both cases that I |= ξ.
This suffices to show that I ∈ N ′, i.e. that I |= OBO,KA(KG)\F , which shows
N ⊆ N ′. In the case of (1), we already know that I |= ξ for each I ∈ M , and,
since N ⊆ M holds, we also have I |= ξ for each I ∈ N . In the case of (3), we
know that (I, 〈M,N〉, 〈M,N〉)(K ξ) = u for each I ∈M . Thus, I |= ξ holds for
each I ∈ N .

We now show that each of the two sets are in fact identical, i.e. M = M ′

and N = N ′. Note first that T ⊆ KA(KG) \ F . Thus, for any I ∈ N ′, we
have I ∈ {I | I |= OBO,T } and therefore N ′ ⊆ M ′, i.e. (M ′, N ′) is an MKNF
interpretation pair. So assume that (M ′, N ′) is an MKNF interpretation pair
with M ⊆ M ′ and N ⊆ N ′, where at least one of the inclusions is proper. We
show that (I ′, 〈M ′, N ′〉, 〈M,N〉)(KG) = t for all I ′ ∈ M ′, and we thus derive
a contradiction to (M,N) being a three-valued MKNF model of KG. For the
former, it suffices to prove that (I ′, 〈M ′, N ′〉, 〈M,N〉)(Kπ(O) ∧ π(PG)) = t for
all I ′ ∈M ′. By definition of M ′ we know that (I ′, 〈M ′, N ′〉, 〈M,N〉)(Kπ(O)) =
t for all I ′ ∈M ′. We only have to show the same for π(PG). We achieve that by
showing that, for each case of Definition 15, the modal atoms appearing in π(PG)
are evaluated to identical truth values in (M,N) and (M ′, N ′). This suffices to
show that (I ′, 〈M ′, N ′〉, 〈M,N〉)(π(PG)) = t for all I ′ ∈ M ′ since (M,N), as a
three-valued MKNF model of KG, ensures that (I ′, 〈M,N〉, 〈M,N〉)(π(PG)) =
t. We thus obtain a contradiction to (M,N) being a three-valued MKNF model.

• Consider each K ξ ∈ T . We obtain (I ′, 〈M ′, N ′〉, 〈M,N〉)(K ξ) = t for all
I ′ ∈M ′ by definition of M ′ just as we have (I, 〈M,N〉, 〈M,N〉)(K ξ) = t
for all I ∈M by Definition 15.

• Consider each K ξ ∈ F . We obtain (I, 〈M,N〉, 〈M,N〉)(K ξ) = f , by
Definition 15. We derive that, by Definition 7, (I, 〈M,N〉, 〈M,N〉)(Kξ) =
f for some I ∈ N . Because of that, and since N ⊆ N ′, we also have
(I ′, 〈M ′, N ′〉, 〈M,N〉)(K ξ) = f for some I ′ ∈ N ′. Thus, by Definition 7,
(I, 〈M ′, N ′〉, 〈M,N〉)(K ξ) = f .

• Consider each K ξ with K ξ 6∈ F and K ξ 6∈ T . By Definition 15,
we obtain (I, 〈M,N〉, 〈M,N〉)(K ξ) = u. By definition of N ′ we have
(I ′, 〈M ′, N ′〉, 〈M,N〉)(K ξ) 6= f . From (I, 〈M,N〉, 〈M,N〉)(K ξ) = u and
M ⊆M ′ we conclude that only (I ′, 〈M ′, N ′〉, 〈M,N〉)(Kξ) = u is possible.

• Consider any modal not-atom appearing in π(PG). Since the evaluation
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of these is done in both cases w.r.t. (M,N), we straightforwardly obtain
the identical evaluation.

�

The following example illustrates the previously introduced notions.

Example 7. Consider K consisting only of rule (8) from Example 4 and an
ontology containing just one assertion:

CD(BNAW) (15)

The ground KB KG contains one rule that results from (8) by substituting x
with BNAW. We thus obtain

KA(KG) = {K Recommend(BNAW),K CD(BNAW),K owns(BNAW),
K lowEval(BNAW),K interesting(BNAW)}.

One can easily check that there is only one three-valued MKNF model (M,N)
of KG, namely the one in which each I ∈M,N satisfies I |= CD(BNAW). This
three-valued MKNF model induces the partition in which CD(BNAW) appears
in T and all other modal K-atoms in F . The related set of first-order formulas
just contains CD(BNAW). This is reasonable since the ground version of (8)
does not allow us to derive anything, and so we can ignore (8) when considering
three-valued MKNF models of KG. �

4.2. Computation of the Alternating Fixpoint
As we have seen in Section 3, a knowledge base may in general have several

three-valued MKNF models. But we have a special interest in the least one
w.r.t. derivable knowledge – the well-founded MKNF model – and the compu-
tation of that model. In order to obtain the well-founded MKNF model and
the corresponding partial partition, we resort to several existing relations and
correspondences with semantics from Logic Programming.

The stable models of a normal logic program Π are the fixpoints of the
Gelfond-Lifschitz operator ΓΠ [19]. The same operator can be used to compute
the (three-valued) well-founded model of Π by the so-called alternating fixpoint
computation (cf. [61]). Intuitively, an operator, which results from applying
ΓΠ twice, is used to compute a least and a greatest fixpoint, which correspond,
respectively, to the true and non-false knowledge. The term “alternating” stems
from the fact that ΓΠ is antitonic, and so successive applications will, in turn,
overestimate and underestimate derivable knowledge in the well-founded model,
ultimately alternating between the two fixpoints. More precisely, by iteratively
applying ΓΠ starting with an empty set of atoms, we first obtain a set of atoms
that includes all the true atoms in the well-founded model of Π, i.e. an overes-
timate of the true atoms in the well-founded model (in other words, a set whose
complement is an underestimate of the set of all false atoms). If we apply ΓΠ
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again to that result, then we obtain a set of atoms that are true for sure, i.e.
an underestimate of the set of all true atoms. If we continue the iteration, we
obtain alternating smaller overestimates and larger underestimates until even-
tually the iteration alternates between two fixpoints – one with all true atoms,
and the other one with all atoms that are true or undefined in the well-founded
model of Π.

Since stable models of logic programs and two-valued MKNF models are
closely related, we adapt this scheme to hybrid MKNF knowledge bases. We
define operators that provide a stable condition for nondisjunctive hybrid MKNF
knowledge bases, and we use these operators to obtain an alternating fixpoint
that corresponds to the well-founded MKNF model.

We start by defining an operator TKG
that, given a set of K-atoms, draws

conclusions from a positive ground hybrid MKNF knowledge base KG, i.e. a
ground hybrid MKNF knowledge base where rules are of the form:

KH ← KA1, . . . ,KAn (16)

Definition 16. Let KG = (O,PG) be a positive, ground hybrid MKNF knowl-
edge base. The operators RKG

, DKG
, and TKG

are defined on subsets of KA(KG)
as follows:

RKG
(S) = {KH | PG contains a rule of the form (16)

such that, for all i, 1 ≤ i ≤ n, KAi ∈ S}
DKG

(S) = {K ξ | K ξ ∈ KA(KG) and OBO,S |= ξ}

TKG
(S) = RKG

(S) ∪DKG
(S)

The operator RKG
derives immediate consequences from the rules in KG while

DKG
yields consequences from the ontology combined with the already known

information in S. The operator TKG
, which combines the other two, is mono-

tonic:

Proposition 4. Let KG = (O,PG) be a positive ground hybrid MKNF knowl-
edge base, and S ⊆ S′ ⊆ KA(KG). Then TKG

(S) ⊆ TKG
(S′).

Proof. Suppose that K H ∈ TKG
(S). By Definition 16, K H ∈ RKG

(S) ∪
DKG

(S) holds. If KH ∈ RKG
(S), then PG contains a rule of the form (16) such

that KAi ∈ S for each 1 ≤ i ≤ n. Since S ⊆ S′, we also have that KAi ∈ S′
for each 1 ≤ i ≤ n and KH ∈ TKG

(S′). If KH ∈ DKG
(S), then KH ∈ M

and OBO,S |= H. By monotonicity of first-order logic and since S ⊆ S′, we also
have OBO,S′ |= H. We conclude that KH ∈ TKG

(S′). �

Since TKG
is monotonic, it has a unique least fixpoint (by the Knaster-Tarski

Theorem [60]) which we denote using TKG
↑ ω in reference to the limit ordinal

of natural numbers ω. It is important to note that the Knaster-Tarski Theorem
in general only says that this fixpoint is reached for some ordinal that might
easily be greater than ω. However, in MKNF knowledge bases, since we do not
allow function symbols or infinite sets of rules, the iteration is performed over a
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finite knowledge base (with finitely many ground rules). As such, the iteration
of TKG

terminates for some finite ordinal below ω. The least fixpoint is obtained
as follows:

TKG
↑ 0 = ∅

TKG
↑ (n+ 1) = TKG

(TKG
↑ n)

TKG
↑ ω =

⋃
i≥0

TKG
↑ i

Similarly to stable models of normal logic programs a fixpoint operator can
be defined that performs a Gelfond-Lifschitz-like transformation [19] that turns
hybrid MKNF knowledge bases into positive ones, and that then applies the
operator TKG

to the resulting knowledge base.

Definition 17. Let KG = (O,PG) be a ground hybrid MKNF knowledge
base and S ⊆ KA(KG). The MKNF transform KG/S is defined as KG/S =
(O,PG/S), where PG/S contains all rules

KH ← KA1, . . . ,KAn

for which there exists a rule

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm

in PG with KBj 6∈ S for all 1 ≤ j ≤ m.

This definition indeed resembles the transformation used to compute stable
models [19] of logic programs. I.e., we remove all rules that contain negated
atoms contradicting the given set S, and we remove all remaining negated atoms
from the other rules. Following [19], we define an operator that computes the
least fixpoint of the resulting knowledge base.

Definition 18. Let KG = (O,PG) be a ground hybrid MKNF knowledge base
and S ⊆ KA(KG). We define ΓKG

(S) = TKG/S ↑ ω.

Inspired by the similarities between the definition of ΓKG
and Γ in [19], the

correspondence of stable models for logic programs and two-valued MKNF mod-
els for knowledge bases without ontology axioms, and the results in alternating
fixpoints of normal logic programs [61], one might wonder whether iteratively
applying the operator ΓKG

would yield the least three-valued MKNF model.
In fact, as shown below in Lemma 3, the operator ΓKG

is antitonic. Thus,
Γ2
KG

is monotonic and guaranteed to have a least fixpoint, which can be ob-
tained by iteratively applying Γ2

KG
starting from the empty set. One may then

ask whether this least fixpoint corresponds to the well-founded MKNF model.
However, as shown in the following example, this is not the case, and, thus, an
adaptation of alternating fixpoints to hybrid MKNF knowledge bases cannot be
as straightforward.

28



Example 8. Consider the hybrid MKNF knowledge base presented in Exam-
ples 2 and 4 for recommending CDs, and suppose now that the user wants to
stall recommendations until an evaluation is available. This can be achieved,
e.g., by adding the rule (17).

K LowEval(x) ← not Recommend(x) (17)

With this rule, together with (8), a CD is not recommended unless one adds
explicit information that the CD has no low evaluation. To ease the reading,
we recall here rule (8):

K Recommend(x) ← K CD(x),not owns(x),not LowEval(x),
K interesting(x). (8)

In fact, if one adds, e.g.,

¬LowEval(ToTheSea) (18)

then all three-valued MKNF models contain K Recommend(ToTheSea). How-
ever, as shown next, K Recommend(ToTheSea) is not contained in the least
fixpoint of Γ2

KG
.

To simplify the computation and presentation of this least fixpoint, we
ground all the rules only with ToTheSea (thus ignoring any other CDs), and we
add explicitly that ToTheSea is a CD (19).

CD(ToTheSea) (19)

We also limit ourselves to the following set of modal atoms (using appropriate
abbreviations):

KA(KG) = {K Rec(Tts),K LowEv(Tts),K CD(Tts),K owns(Tts),K int(Tts)}

We start with S0 = ∅, so we compute ΓKG
(S0) and S1 = ΓKG

(ΓKG
(S0)):

ΓKG
(S0) = KA(KG)

S1 = {K CD(Tts),K int(Tts)}

Note that, since K LowEv(Tts) ∈ TKG/S0(∅), then, by (18), OBO,TKG/S0 (∅) is
inconsistent. So, the subsequent application of DKG

allows us to derive every-
thing, and thus ΓKG

(S0) = KA(KG).
We continue with ΓKG

(S1) and S2 = ΓKG
(ΓKG

(S1)) and obtain:

ΓKG
(S1) = KA(KG)

S2 = {K CD(Tts),K int(Tts)}

Now, since S1 = S2, the fixpoint is reached, and, indeed, does not contain
K Rec(Tts). This is so because, since K LowEv(Tts) ∈ ΓKG

(S1), rule (8)
grounded with Tts is removed in PG/ΓKG

(S1).
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Note that K LowEv(Tts) ∈ ΓKG
(S1) because rule (17) is not removed in

PG/S1, given that K Rec(Tts) 6∈ S1. In an analogy with [61], K LowEv(Tts) is
thus either true or undefined , since it belongs to the overestimate in the alternat-
ing fixpoint. This shows that, in opposite to the three-valued MKNF semantics,
¬LowEv(Tts) does not imply not LowEv(Tts).15 In fact, for any three-valued
MKNF model (M,N) of the restricted knowledge base, if ¬LowEv(Tts) holds,
then, for all I ∈M , LowEv(Tts) 6∈ I. Thus, since N ⊆M , we also have, for all
I ∈ N , LowEv(Tts) 6∈ I, i.e. notLowEv(Tts) should be true in any three-valued
MKNF model of the knowledge base. �

One way of guaranteeing that the classical negation of some DL-atom H in
the ontology imposes the truth of not H (despite the existence of rules with
head KH) is to change the MKNF transform defined above, so that rules with
head KH are removed whenever ¬H holds:

Definition 19. Let KG = (O,PG) be a ground hybrid MKNF knowledge
base and S ⊆ KA(KG). The MKNF-coherent transform KG//S is defined as
KG//S = (O,PG//S), where PG//S contains all rules

KH ← KA1, . . . ,KAn

for which there exists a rule

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm

in PG with KBj 6∈ S for all 1 ≤ j ≤ m and OBO,S 6|= ¬H.

Note the difference between this definition and Definition 17: we also remove
a rule from the MKNF-coherent transform, in case the classical negation of the
head is derivable from the ontology augmented by S.

Definition 20. Let KG = (O,PG) be a ground hybrid MKNF knowledge base
and S ⊆ KA(KG). We define Γ′KG

(S) = TKG//S
↑ ω.

The operator Γ′KG
is also antitonic (cf. Lemma 3), and so applying Γ′KG

twice
is guaranteed to have a least fixpoint. Clearly, in the case of the knowledge base
of Example 8, this least fixpoint includes KRec(Tts). The reason is that the new
MKNF-coherent transform does not contain any rule with head KLowEval(Tts)
once ¬LowEval(Tts) is derived, and so rule (8) instantiated with Tts is not
removed at some step of the iteration. However, the next example shows that
the operator Γ′KG

literally hides inconsistencies from the iteration. A modal
atom K H may be simply considered false, even though there is a rule with
head KH such that the body is true in all three-valued MKNF models of the
respective knowledge base.

15This problem is akin to the coherence problem [55] in extended logic programs, where a
(classical false) formula ¬ϕ has to impose notϕ explicitly.
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Example 9. Consider again only the hybrid MKNF knowledge base presented
in Example 2 and 4 for recommending CDs. Now suppose that the user wants
to ensure that only inexpensive CDs are to be recommended. Note that this is
different from recommending CDs that have a discount. The ontology axiom
(20) states that any expensive CD must never be recommended. In general,
comparing prices requires some predicates from the numerical domain, such as
concrete domains for the DL EL++ [2]. For simplicity, we assume here that
this is handled internally, so we simply add a fact (21) saying that ToTheSea is
expensive.

Expensive v ¬Recommend (20)
K Expensive(ToTheSea) ← (21)

This knowledge base is clearly MKNF-inconsistent: simply note that we can
conclude that ToTheSea is recommended (from (8) instantiated by ToTheSea)
and not recommended at the same time (by (20)–(21)). However, it is easy to
check that the least fixpoint of applying Γ′KG

twice does not include KRec(Tts),
simply because the MKNF-coherent transform removes the rule (8) instantiated
with Tts once ¬Recommend(Tts) is true, even though the rule body is true. �

This example shows that Γ′KG
cannot be applied always in the alternating

fixpoint. Examining again the computation of Example 8, we may see that the
application of Γ′KG

would only be required when we compute overestimates of
the true knowledge. In this case, it would suffice to apply Γ′KG

for computing
Γ′KG

(S1). Then, S2 could be obtained by simply applying ΓKG
to the previous

result, thus computing S2 now by ΓKG
(Γ′KG

(S1)). At the same time, in case
of Example 9, the partial usage of ΓKG

would ensure that Recommend(Tts) is
kept in one part of the iteration so that inconsistencies may still be detectable.

This suggests that the computation of the well-founded MKNF model could
be obtained by alternating the application of the operators Γ′KG

and ΓKG
. In

fact, as we will show, this interaction of the two operators yields the well-founded
MKNF model. But before we formally define this interaction and prove its
correspondence to the well-founded MKNF model, we show that both operators
are indeed antitonic.

Lemma 3. If KG is a ground hybrid MKNF knowledge base and S ⊆ S′ ⊆
KA(KG), then ΓKG

(S′) ⊆ ΓKG
(S) and Γ′KG

(S′) ⊆ Γ′KG
(S).

Proof. We show the argument for ΓKG
. The proof for Γ′KG

is identical.
By Definition 18, we have to show that TKG/S′ ↑ ω ⊆ TKG/S ↑ ω. We

prove by induction on n that TKG/S′ ↑ n ⊆ TKG/S ↑ n holds. The base case
for n = 0 is trivial since ∅ ⊆ ∅. Assume that TKG/S′ ↑ n ⊆ TKG/S ↑ n holds
and consider K H ∈ TKG/S′ ↑ (n + 1). Then K H ∈ TKG/S′(TKG/S′ ↑ n)
and there are two cases to consider. First, KG/S′ contains a rule of the form
KH ← KA1, . . . ,KAn such that KAi ∈ TKG/S′ ↑ n for each 1 ≤ i ≤ n. Since
S ⊆ S′, we also have KH ← KA1, . . . ,KAn in KG/S and, by the induction
hypothesis, KAi ∈ TKG/S ↑ n for each 1 ≤ i ≤ n. Hence, KH ∈ TKG/S ↑ (n+1).
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Alternatively, KH is a consequence obtained from DKG/S′(TKG/S′ ↑ n). By the
induction hypothesis, TKG/S′ ↑ n ⊆ TKG/S ↑ n holds, and we conclude from the
monotonicity of first-order logic that KH ∈ DKG/S(TKG/S ↑ n). �

Since both operators are antitonic, we can define an alternating iteration for
the two operators as motivated above:

Definition 21. Let KG be a ground hybrid MKNF knowledge base. We define
two sequences Pi and Ni as follows.

P0 = ∅ N0 = KA(KG)
Pn+1 = ΓKG

(Nn) Nn+1 = Γ′KG
(Pn)

Pω =
⋃

Pi Nω =
⋂

Ni

The sequence of Pi is intended to compute modal atoms that are true, while
the sequence Ni computes modal atoms that are not false. The former is an
increasing sequence, while the latter is decreasing:

Lemma 4. Let KG be a ground hybrid MKNF knowledge base. Then Pα ⊆ Pβ

and Nβ ⊆ Nα for all ordinals α, β with α ≤ β ≤ ω.

Proof. Whenever α = β, the statement holds automatically. It thus suffices
to consider α < ω and to show via induction over α that the statement holds. If
β is a successor ordinal, then it is sufficient to show the property for β = α+ 1,
all the other successor cases follow by transitivity of ⊆.

If α = 0, then P0 = ∅ and P0 ⊆ Pβ holds for any β. Equivalently, N0 =
KA(KG), thus Nβ ⊆ N0 also holds for any β.

Suppose the property holds for all α ≤ n. We must show that Pn+1 ⊆
Pn+2 and Nn+2 ⊆ Nn+1. We have Pn+1 = Γ(Nn) and Pn+2 = Γ(Nn+1).
Since Nn+1 ⊆ Nn by the induction hypothesis, Pn+1 ⊆ Pn+2 holds in virtue
of the antimonotonicity of Γ′. Likewise, we know that Nn+1 = Γ′(Pn) and
Nn+2 = Γ′(Pn+1). Since Pn ⊆ Pn+1 by the induction hypothesis, we obtain
by antitonicity of Γ′ that Nn+2 ⊆ Nn+1.

The only case left is the one where β = ω. But this case holds by definition.
�

Like the iteration of TK, and for the very same reasons, these iterations are
finite and reach a fixpoint before ω – in the case of Pi a least fixpoint, and in
the case of Ni a greatest fixpoint:

Proposition 5. Let KG be a ground hybrid MKNF knowledge base. Then Pω

is the least fixpoint of the sequence of Pi and Nω is the greatest fixpoint of the
sequence of Pi.

Proof. We show the argument for Pω. The argument for Nω is analogous.
We define an operator Φ(S) = ΓKG

(Γ′KG
(S)) on subsets S of KA(KG), iter-

ated as usual. It is easy to see that Φ ↑ i = P2i and, thus, that Φ is monotonic.
By the Knaster-Tarski Theorem we conclude that Pω is equal to the least fix-
point of the sequence of Pi. �
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This proposition also allows us to show that the least fixpoint can be directly
computed from the greatest one and vice versa.

Proposition 6. Let KG be a ground hybrid MKNF knowledge base. Then Pω =
ΓKG

(Nω) and Nω = Γ′KG
(Pω).

Proof. We show the case of Nω = Γ′(Pω); the other case proceeds identically.
By Proposition 5, we know that Pω is the least fixpoint of the sequence of Pi.
Since the ground knowledge base is finite, there is an n such that Pn = Pω,
and so Pn = Pm for any m ≥ n. Subsequently, we have Nn+1 = Nm for any m
with m ≥ n+1, i.e. Nn+1 = Γ′KG

(Pω) is a fixpoint of the sequence Ni. Assume
that Nn+1 is not the greatest fixpoint. Then there is an Nl, l < n + 1, with
Nl = Nl+2 and Nl ⊃ Nn+1. Then Pl+1 also equals a fixpoint in the sequence
Pi with Pl+1 being necessarily smaller than Pn. This contradicts the initial
assumption that Pn is the least fixpoint and finishes the proof. �

Thus, we can either compute the two sequences Pi and Ni in parallel until we
reach an n such that Pn = Pn+1 and Nn = Nn+1 or we compute just one of the
two fixpoints in the manner sketched in the proof of Proposition 5 (alternating
between ΓKG

and Γ′KG
) and let the other one follow by one application of either

ΓKG
or Γ′KG

.
The two fixpoints can be used to define the well-founded partition which

is, as we show in Section 4.3, the partition inducing the well-founded MKNF
model.

Definition 22. The well-founded partition of an MKNF-consistent ground hy-
brid MKNF knowledge base KG = (O,PG) is defined by:

(TW , FW ) = (Pω,KA(KG) \Nω)

Note that we restrict the definition to MKNF-consistent hybrid MKNF
knowledge bases. This is reasonable since in many cases the pair (TW , FW )
obtained for an MKNF-inconsistent knowledge base would not satisfy the con-
ditions imposed in the definition of a partition (cf. Definition 13). Therefore,
in Section 4.3, we show that all modal K-atoms derived in Pω, KA(KG) \Nω

respectively, are true, false respectively, in all three-valued MKNF models of
KG (see Proposition 7), including the special case, in which KG is MKNF-
inconsistent. This can be used to present necessary and sufficient conditions to
check for MKNF-consistency (see Theorem 2), which are based on two compar-
isons, each of which compares a further iteration of the operators ΓKG

and Γ′KG

w.r.t. one of the fixpoints. Given an established check for MKNF-consistency,
we can show that the well-founded partition is in fact a partial partition (see
Proposition 8), if the considered knowledge base KG is consistent. In this case,
we can also show that a corresponding MKNF interpretation pair exists that
satisfies KG (see Theorem 3), and that this interpretation pair is a three-valued
MKNF model of KG (see Theorem 4). This allows us to conclude that this
specific MKNF interpretation pair corresponding to the well-founded partition
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is the well-founded MKNF model (see Theorem 5). We can then show that,
given KG with empty O, the well-founded partition and the well-founded model
for logic programs coincide (see Theorem 6) and finish with the results for data
complexity (see Theorem 7). But before we come to that (in Section 4.3), we
illustrate the alternating fixpoint construction in the two motivating examples
(Examples 8, 9) presented before.

Example 10. Consider the hybrid MKNF knowledge base presented in Exam-
ple 8, with the same limitation on the set of modal atoms.

For similarity with the computation presented in Example 8, we compute
the fixpoints as sketched in the proof of Proposition 5. We start with P0 = ∅
and compute N1 = Γ′KG

(P0) and P2 = ΓKG
(N1):

N1 = {K CD(Tts),K int(Tts),K Rec(Tts)}
P2 = {K CD(Tts),K int(Tts),K Rec(Tts)}

It is easy to check that P2 is already the least fixpoint. Note the difference
to the iteration in Example 8. Now, K LowEv(Tts) does not occur in N1,
since OBO,P0 |= ¬LowEv(Tts). So rule (17) instantiated with Tts is removed
in the MKNF coherent-transform, and thus K LowEv(Tts) 6∈ Γ′KG

(P0). As a
consequence, we obtain KRec(Tts) in P2. We can compute the greatest fixpoint
Nω = Γ′KG

(Pω), and we obtain that Nω equals N1. Note that if axiom (18)
is omitted, then both K LowEv(Tts) and K Rec(Tts) remain undefined. Thus,
operator Γ′KG

, in combination with (18), shows how the formula ¬LowEv(Tts)
imposes that not LowEv(Tts) holds, ensuring in this example the derivability
of K Rec(Tts). �

The knowledge base in Example 9 is MKNF-inconsistent. Thus, there cannot
be a well-founded partition as in Definition 22. Nevertheless, we present the
computation of the alternating fixpoint, in order to show the difference to the
computation in Example 9, and to hint on how to detect inconsistencies, a topic
that is detailed in the next section.

Example 11. Consider the ground hybrid MKNF knowledge base KG pre-
sented in Example 9, where all rules are only grounded with Tts, and the
following restricted set of modal atoms is used:

KA(KG) = {K Rec(Tts),K CD(Tts),K LowEv(Tts),K owns(Tts),
K int(Tts),K Exp(Tts)}

To further simplify the presentation, we only consider rule (8), axioms (19)–
(21), and we simplify (9) to the fact (26). To ease the reading we repeat here
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the complete knowledge base obtained after all simplifications:

Exp v ¬Rec (22)
CD(Tts) (23)

K Exp(Tts) ← (24)
K Rec(Tts) ← K CD(Tts),not owns(Tts),not LowEval(Tts),

K int(Tts). (25)
K int(Tts) ← (26)

For computing the two fixpoints, we start with P0 = ∅ and N0 = KA(KG).
We continue with P1 = ΓKG

(N0) and N1 = Γ′KG
(P0):

P1 = {K CD(Tts),K int(Tts),K Exp(Tts)}
N1 = KA(KG)

Note that once KRec(Tts) is derived in the computation of N1 and added to the
set S of derived knowledge of TKG/∅, then DKG/∅ allows us to derive everything,
simply because OBO,S with {K Exp(Tts),K Rec(Tts)} ⊆ S is inconsistent.

We continue with P2 = ΓKG
(N1) and N2 = Γ′KG

(P1), and obtain:

P2 = {K CD(Tts),K int(Tts),K Exp(Tts)}
N2 = {K CD(Tts),K int(Tts),K Exp(Tts)}

Since OBO,P1 |= ¬Rec(Tts), the rule (25) no longer appears in the transform
used for computing N2, and the explosive behaviour of DKG/∅ disappears as
well. As a consequence, in the next iteration we obtain KRec(Tts) ∈ P3, which
again yields the explosive inconsistency and the derivation of KA(KG).

P3 = KA(KG)
N3 = {K CD(Tts),K int(Tts),K Exp(Tts)}

It is easy to check that these are the fixpoints. We have K Rec(Tts) ∈ P3 but
K Rec(Tts) 6∈ N3. Intuitively, this means that K Rec(Tts) is true and false at
the same time, something that is already a clear indication for the inconsistency
of the considered knowledge base. �

4.3. The Well-Founded MKNF Model and Related Properties
The well-founded partition (TW , FW ) consists of modal atoms that are in-

tended to be true (TW ), false (FW ) or undefined (those modal atoms neither
occurring in TW nor in FW ). But this is not merely an intention. The two
sequences of Pi and Ni allow us to show that any modal atom that is added
to an element of the sequence of Pi (resp. removed from an element of the
sequence of Ni) must be true in all three-valued MKNF models of KG (resp.
false). For that purpose we need to define a notion of dependency that captures
more precisely the derivations from OBO,S , for some S, by the operator DKG

.
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Definition 23. Let KG be a ground hybrid MKNF knowledge base, K H a
modal K-atom with KH ∈ KA(KG), and S a (possibly empty) set of modal
K-atoms with S ⊆ KA(KG). We say that KH depends on S if and only if

(i) OBO,S |= H and

(ii) there is no S′ with S′ ⊂ S such that OBO,S′ |= H.

Intuitively, S is a minimal set that, in combination with O, allows us to derive
KH. Note that there may exist several such minimal sets. Furthermore, S may
also be minimal such that OBO,S is inconsistent. An appropriate restriction in
the proof of the following proposition then ensures that this notion can be used
properly.

Proposition 7. Let KG be a ground hybrid MKNF knowledge base and (T, F )
the pair (Pω,KA(KG) \ Nω). Then K H ∈ T implies that K H is true (and
notH is false) in all three-valued MKNF models (M,N) of KG, and KH ∈ F
implies that KH is false (and notH is true) in all three-valued MKNF models
(M,N) of KG.

Proof. According to Proposition 5, we have to show that, for all i, KH ∈ Pi

implies that KH is true (and notH is false) in all three-valued MKNF models
(M,N) of KG, and KH 6∈ Ni implies that KH is false (and notH is true) in all
three-valued MKNF models (M,N) of KG. We show the argument for KH by
an induction on i. This also shows the argument for notH since, for all partial
MKNF models (M,N) of any given K, we have that (I, 〈M,N〉, 〈M,N〉)(KH) =
¬(I, 〈M,N〉, 〈M,N〉)(notH).

The base case i = 0 trivially holds, since P0 is empty and N0 is equal to
KA(KG).

(i) Suppose that the property holds for all i ≤ n. We consider i = n+ 1 for
two cases, namely KH ∈ Pn+1 and KH 6∈ Nn+1.

Let K H ∈ Pn+1. If K H already occurs in Pn, then K H is true in all
three-valued MKNF models (M,N) of KG, by the induction hypothesis (i).
Otherwise, KH ∈ ΓKG

(Nn), i.e. KH ∈ TKG/Nn
↑ ω but KH 6∈ Pn. Since

KH is introduced by TKG/Nn
↑ ω, we know that KH ∈ TKG/Nn

↑ j for some
j, and we show by induction on j that KH is true in all three-valued MKNF
models (M,N) of KG.

The base case holds trivially, since TKG/Nn
↑ 0 is empty.

(ii) Suppose that the claim holds for all j ≤ m, and consider KH ∈ TKG/Nn
↑

m+ 1.
If K H already occurs in TKG/Nn

↑ m, then the claim holds automati-
cally by the induction hypothesis (ii). Otherwise, there are two cases to con-
sider. Either there is a positive rule K H ← K A1, . . .K An in KG/Nn with
KAi ∈ TKG/Nn

↑ m, or KH is the consequence of DKG/Nn
(TKG/Nn

↑ m). In
the first case, by the induction hypothesis (ii), all K Ai are true in all three-
valued MKNF models (M,N) of KG. Additionally, there is a rule K H ←
KA1, . . .KAn,notB1, . . . ,notBm in KG, and since the positive version of this
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rule occurs in KG/Nn, no KBj occurs in Nn, and thus (by the induction hy-
pothesis (i)), all KBj are false in all three-valued MKNF models (M,N) of KG.
Consequently, KH has to be true in all three-valued MKNF models (M,N) of
KG. In the second case, OBO,S |= H with S = TKG/Nn

↑ m holds. Since O and
all modal atoms occurring in TKG/Nn

↑ m are true in all three-valued MKNF
models of KG (by the induction hypothesis (ii)), we can immediately conclude
that KH also has to be true in all three-valued MKNF models (M,N) of KG.

Alternatively, consider all KH 6∈ Nn+1, i.e. all KH 6∈ Γ′KG
(Pn). Let U be

the set of all such KH 6∈ Γ′KG
(Pn). Note that OBO,Pn

has to be consistent,
otherwise U would be empty. Now, from the definition of Γ′KG

(Pn) we can
conclude that, for each modal K-atom KH in U , the following conditions are
satisfied:16

(Ui) for each rule KH ← body in PG at least one of the following holds.

(Uia) Some modal K-atom KA appears in body and in U ∪KA(KG) \Nn.

(Uib) Some modal not-atom notB appears in body and in Pn.

(Uic) OBO,Pn
|= ¬H

(Uii) for each (possibly empty) S with S ⊆ Pn, on which KH depends, there
is at least one modal K-atom KA such that OBO,S\{K A} 6|= H and KA
in U ∪ KA(KG) \Nn.

The cases of (Uib) and (Uic) correspond to the removal of rules performed for
the MKNF-coherent transform (cf. Definition 19). By the induction hypothesis
(i), we know that, for all K B ∈ Pn, K B is true for all three-valued MKNF
models of KG. Thus, in case of (Uib), body is false in all three-valued MKNF
models of KG, and, in case of (Uic), ¬H is true in all three-valued MKNF models
of KG. In case of (Uia), the corresponding rule with head KH still appears in
the MKNF-coherent transform but some modal K-atom K A is not derivable
and, thus, KH is not derivable either. Likewise, in case of (Uii), some modal
K-atom KA is not (any longer) derivable, so that KH cannot be derived from
the ontology. If KA appears in KA(KG)\Nn, then, by the induction hypothesis
(i), we know that KA is false in all three-valued MKNF models of KG. The only
remaining case are those KA in U . Assume first that all conditions are satisfied
without reference to U . Then, clearly, all modal K-atoms have to be false in
all three-valued MKNF models of KG. Now, consider the complete conditions
(Uia)–(Uii): since all KH satisfy the conditions (Uia)–(Uii), and since three-
valued MKNF models minimize derivable knowledge in the order t > u > f , we
derive that all KH are false in all three-valued MKNF models of KG. �

For an MKNF-consistent knowledge base KG, the pair (T, F ) in Proposi-
tion 7 is defined exactly in the same way as the well-founded partition, and we
show below that this correspondence indeed holds. Of course, there is still the

16These conditions resemble the notion of unfounded sets in [62].
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issue of determining, based on the iterations and the consistency of O alone,
whether or not the knowledge base is MKNF-consistent. The next theorem
presents the necessary and sufficient conditions for MKNF-inconsistency:

Theorem 2. Let KG = (O,PG) be a ground hybrid MKNF knowledge base, Pω

the fixpoint of the sequence Pi, and Nω the fixpoint of the sequence Ni. KG is
MKNF-inconsistent iff Γ′KG

(Pω) ⊂ ΓKG
(Pω) or Γ′KG

(Nω) ⊂ ΓKG
(Nω) or O is

inconsistent.

Proof. First, we show that if any of the three conditions holds, then KG is
MKNF-inconsistent. For the two cases w.r.t. Nω and Pω, we present the proof
for Nω. The other case can be proven analogously.

From Proposition 6 we know that ΓKG
(Nω) = Pω. Furthermore, by Propo-

sition 7, we have that all modal atoms KH ∈ Pω are true in all three-valued
MKNF models (M,N) of KG. If Γ′KG

(Nω) ⊂ ΓKG
(Nω), then there is at least

one K H such that K H ∈ ΓKG
(Nω) \ Γ′KG

(Nω). The only reason for K H
not to occur in Γ′KG

(Nω) is that there is a modal K-atom K A such that
KA ∈ ΓKG

(Nω) \ Γ′KG
(Nω) and OBO,Nω

|= ¬A. Either KH = KA or KH
and KA appear in a set U that is constructed as in the proof of Proposition
7, e.g., for each rule KH ← body in KG//Nω, we have KA in body. In both
cases, KA is true in all three-valued MKNF models of KG but the addition of
all modal K-atoms that are not false in all three-valued MKNF models of KG
(including KA) to O derives ¬A. We conclude that KG is MKNF-inconsistent.

The third case is a direct consequence of the way evaluation of MKNF for-
mulas is defined: if O is inconsistent, then there is no first-order model of O. As-
sume that (M,N) is a three-valued MKNF model of KG. Then, (M,N) satisfies
KG and thus also O, i.e., for each I ∈M , we have (I, 〈M,N〉, 〈M,N〉)(π(O)) =
t. Since M must not be empty, we derive a contradiction.

For the other direction, we have to show that any possibly occurring MKNF-
inconsistency is detected. So, suppose that KG is MKNF-inconsistent. If O is
inconsistent, then we are done immediately. Otherwise, the rules in PG alone
cannot be MKNF-inconsistent, since they only consist of modal atoms without
any appearance of classical negation. Likewise, rules without DL-atoms or rules
without DL-atoms in at least some head cannot be inconsistent since the deriva-
tion from the ontology O never conflicts with any rule. Consider thus such an
arbitrary DL-atom KH with a rule KH ← KA1, . . . ,KAn,notB1, . . . ,notBm
in PG. If H is true as a consequence of O, then the operator DKG

ensures that
KH is true as well, and no inconsistency occurs.

So, let H be first-order false and KH ∈ Pω, i.e. KH is true in all three-
valued MKNF models of KG. But then Γ′KG

(Nω) ⊂ ΓKG
(Nω) and the inconsis-

tency is detected. Alternatively, KH could be undefined but then KH ∈ Nω,
and this is not possible since H is first-order false and Γ′KG

suppresses KH. So
the only case missing is the one where KH is false in all three-valued MKNF
models (as enforced by the operator Γ′KG

) but the body of at least one rule with
head KH is undefined. Thus Γ′KG

(Pω) ⊂ ΓKG
(Pω). �

We apply this check for consistency to our previous examples:
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Example 12. Consider again KG from Example 11. We have Pω = P3 and
Nω = N3. We check for inconsistency (assuming O is consistent) and obtain
Γ′KG

(Pω) = ΓKG
(Pω) and Γ′KG

(Nω) ⊂ ΓKG
(Nω). So we (rightly) conclude that

KG is inconsistent.
Now reconsider KG from Example 10. We have Pω = P2 and Nω = N1.

We check for consistency and obtain Γ′KG
(Pω) = ΓKG

(Pω) and Γ′KG
(Nω) =

ΓKG
(Nω). Hence, the knowledge base is consistent, and we obtain the well-

founded partition

(TW , FW ) = ({K CD(Tts),K int(Tts),K Rec(Tts)},
{K owns(Tts),K LowEv(Tts)}).

�

The following example shows that we in fact need both the calculations w.r.t.
the two fixpoints.

Example 13. Consider the following MKNF-inconsistent knowledge base that
is.

R v ¬P
R(a)

KP (a) ← notP (a)

P (a) must be false from the ontology alone, and so notP (a) must hold, which
immediately causes an inconsistency.

Only the test using Nω is able to detect this inconsistency. For KA(KG) =
{K P (a)}, we obtain Pω = {K P (a)} and Nω = ∅ and thus Γ′KG

(Pω) =
ΓKG

(Pω) = ∅ and Γ′KG
(Nω) = ∅ ⊂ ΓKG

(Nω) = {KP (a)}.
On the other hand, the following knowledge base is also MKNF-inconsistent,

but only the test with Pω allows us to discover this.

R v ¬P
R(a)

KP (a) ← notu

Ku ← notu

For KA(KG) = {K P (a),K u} we obtain Pω = ∅ and Nω = {K u} and thus
Γ′KG

(Pω) = Nω ⊂ ΓKG
(Pω) = KA(KG) and Γ′KG

(Nω) = ΓKG
(Nω) = Pω.

The difference between the two examples is that in the first example there
is a rule with true body and false head, while in the second example there is a
rule with undefined body and false head. Each of the two conditions captures
one of the cases, which explains why two conditions need to be checked. �

As already said, normal rules alone cannot be inconsistent, unless integrity
constraints (i.e. rules whose head is K f , cf. [52]) are allowed. In this simpler
case, inconsistencies are easily detected since K f must occur in KA(KG) \Nω.

If KG is MKNF-consistent, then the well-founded partition is in fact a partial
partition.
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Proposition 8. Let KG be an MKNF-consistent ground hybrid MKNF knowl-
edge base and (TW , FW ) = (PKG

,KA(KG) \ NKG
) the well-founded partition.

Then (TW , FW ) is a partial partition.

Proof. From Theorem 2 and since KG is MKNF-consistent, we obtain that
Γ′KG

(Pω) = ΓKG
(Pω) and Γ′KG

(Nω) = ΓKG
(Nω). Those two equalities also

yield that TW ∩ FW = ∅, which shows that (TW , FW ) is a partition (since TW
and FW are subsets of KA(KG)). �

It can also be shown that the well-founded partition yields an MKNF inter-
pretation pair that satisfies KG.

Theorem 3. Let KG be an MKNF-consistent ground hybrid MKNF KB and
(TW , FW ) = (PKG

,KA(KG) \ NKG
) the well-founded partition of KG. Then

(IP , IN ) |= KG where IP = {I | I |= OBO,PKG
} and IN = {I | I |= OBO,NKG

}.

Proof. First of all, (IP , IN ) is a proper MKNF interpretation pair, i.e. since
any I ∈ IN also satisfies OBO,PKG

we obtain IN ⊆ IP . By Definition 3, we know
that KG = K π(O) ∧ π(PG). Since π(O) occurs in OBO,PKG

and all I ∈ IP
satisfy OBO,PKG

, we have (I, 〈IP , IN 〉, 〈IP , IN 〉)(K π(O)) = t for all I ∈ IP .
Thus, we only have to consider the evaluation of (I, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)).

We start by evaluating the modal atoms occurring in π(PG). Let K H ∈
π(PG). Suppose at first that KH ∈ TW . As such (I, 〈IP , IN 〉, 〈IP , IN 〉)(KH) =
t. Alternatively, suppose KH ∈ FW and assume that OBO,NKG

|= H. In this
case, K H ∈ NKG

by means of DKG
, and we conclude that OBO,NKG

6|= H.
Therefore, we have (I, 〈IP , IN 〉, 〈IP , IN 〉)(K H) = f . Finally, let K H occur
in NKG

but not in TW or in FW . We know that OBO,NKG
|= H. Assume

OBO,PKG
|= H. In this case, KH ∈ PKG

by means of DKG
, and we conclude

that OBO,PKG
6|= H. Therefore, we have (I, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = u.

The cases for not H ∈ π(P) proceed analogously. Indeed, if K H ∈ TW ,
then we have (I, 〈IP , IN 〉, 〈IP , IN 〉)(not H) = f ; if K H ∈ TW , then we have
(I, 〈IP , IN 〉, 〈IP , IN 〉)(notH) = t; and otherwise (I, 〈IP , IN 〉, 〈IP , IN 〉)(notH) =
u.

Now consider π(PG) which consists of a set of implications, each correspond-
ing to one rule in PG. To show (I, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)) = t, we only have
to guarantee that the three cases that map an implication ⊃ to false do not
occur, i.e. the cases where the body of the original rule is true but the head
is not (respectively, the body is undefined and the head is false). Assume that
any of the three cases holds. If the body of such a rule is true, then by the
alternating fixpoint construction we have that the head is true as well, contra-
dicting these two cases. If the rule body is undefined, then (by NKG

and the
alternating fixpoint) we obtain that the head has to be undefined or true, again
contradicting our assumption. Thus, (I, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)) = t holds.
�

This result can be combined with Proposition 3 to show that the well-founded
partition results in a three-valued MKNF model.

40



Theorem 4. Let KG be an MKNF-consistent ground hybrid MKNF KB and
(TW , FW ) = (PKG

,KA(KG) \ NKG
) the well-founded partition of KG. Then

(IP , IN ) is a three-valued MKNF model of KG, where IP = {I | I |= OBO,PKG
}

and IN = {I | I |= OBO,NKG
}.

Proof. We know from Theorem 3 that (IP , IN ) satisfies KG. By Proposition
3, this MKNF interpretation pair exactly corresponds to the one that equals
to a three-valued MKNF model inducing that partition. Thus (IP , IN ) is a
three-valued MKNF model of KG. �

In fact, (IP , IN ) is the unique well-founded MKNF model, i.e. the least
partial MKNF model w.r.t. derivable knowledge.

Theorem 5. Let KG be an MKNF-consistent ground hybrid MKNF KB and
(IP , IN ) the three-valued MKNF model of KG induced by the well-founded par-
tition (TW , FW ). For any three-valued MKNF model (M,N) of KG we have
(M,N) �k (IP , IN ). Indeed, (IP , IN ) is the well-founded MKNF model of KG.

Proof. We have shown in Proposition 3 that any three-valued MKNF model
(M,N) of KG induces a partition (T, F ) which in turn gives rise to the same
three-valued MKNF model (via the objective knowledge). By Proposition 7,
K H ∈ TW implies that K H is true (and not H is false) in all three-valued
MKNF models (M,N) of KG, and KH ∈ FW implies that KH is false (and
notH is true) in all three-valued MKNF models (M,N) of KG. We conclude
that TW ⊆ T and FW ⊆ F . Furthermore, we know that IP = {I | I |= OBO,TW

}
and IN = {I | I |= OBO,KA(KG)\FW

}, and also that M = {I | I |= OBO,T } and
N = {I | I |= OBO,KA(KG)\F }. It is straightforward to see that M ⊆ IP and
IN ⊆ N , which by Definition 11 finishes the proof. �

This central theorem not only shows that the well-founded MKNF model
is unique and well-defined, since the well-founded MKNF model is exactly the
three-valued MKNF model that is least w.r.t. �k, but also that the well-founded
MKNF model is a sound approximation of any total three-valued MKNF model
and therefore of any two-valued MKNF model. Thus, the well-founded partition
can also be used in the algorithms presented in [52] for computing a subset of
the knowledge that holds in all partitions corresponding to a two-valued MKNF
model.

The well-founded partition of knowledge bases consisting of only rules, coin-
cides with the well-founded model of the corresponding (normal) logic program.

Theorem 6. Let KG be a ground program of MKNF rules, Π a normal logic
program obtained from PG by transforming each MKNF rule

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm

into a rule
H ← A1, . . . , An,notB1, . . . ,notBm
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of Π, (TW , FW ) the well-founded partition of KG, and WΠ the well-founded
model of Π. Then KH ∈ TW if and only if H ∈ WΠ, and KH ∈ FW if and
only if notH ∈WΠ.

Finally, the following theorem is obtained from the data complexity results
for positive nondisjunctive MKNF knowledge bases in [52], where data complex-
ity is measured in terms of A-Box assertions and rule facts.

Theorem 7. Let K be a hybrid MKNF KB. Assuming that entailment of ground
DL-atoms in DL is decidable with data complexity C, the data complexity of
computing the well-founded partition is in PC.

For comparison, the data complexity for reasoning with two-valued MKNF
models in nondisjunctive programs is shown to be EPC where E = NP if C ⊆ NP,
and E = C otherwise. Thus, computing the well-founded partition ends up in a
strictly smaller complexity class than deriving the two-valued MKNF models. In
fact, if the description logic fragment is tractable,17 then we obtain a formalism
whose model is computed with a data complexity in P. This is remarkable,
since to the best of our knowledge this is the first time that a general tractable
local closed world extension for DLs has been identified.

5. Related Work

Several proposals exist for combining rules and ontologies (see, e.g., [13, 28]
for a brief survey). They can be split into two groups, namely those semantically
based on first-order logics solely (such as description logics alone), and the
hybrid approaches (such as hybrid MKNF) providing a semantics combining
elements of first-order logics with nonmonotonicity.

The most general approach in the first group is SWRL [32], an unrestricted
combination of OWL-DL with function-free Horn rules (i.e., rules without nega-
tion). The approach is very expressive but undecidable, yet nevertheless gen-
eralises many approaches in this group. Applying, e.g., DL-safety to SWRL
rules yields DL-safe rules [53], a decidable subset of SWRL. AL-log [10], a com-
bination of DL-safe positive rules and ALC, and CARIN [45] are also notable
formalisms generalized by SWRL. In both cases, the ontology only serves as in-
put to the rules and not vice versa, i.e., information flow is one way. Description
Logic Programs (DLP) [24, 44] are a fragment of OWL that can be transformed
into logic programs of positive rules. In the same spirit, Horn-SHIQ [33] is
a fragment of OWL that can be translated into Datalog, and (like DLP) is of
tractable data complexity.18 Recently, DLP has been generalised to Description
Logic Rules [39, 41], i.e. rules that may contain description logic expressions.
This enriches the DL, on which the description logic rules are based, with so-
phisticated constructs normally only available to more expressive description

17See, e.g., the OWL2 profiles at http://www.w3.org/TR/owl2-profiles/.
18Further analyses of Horn description logics are provided in [43].
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logics, without increasing the complexity. Similarly, ELP [39, 42, 48] is a poly-
nomial language covering important parts of OWL 2. ELP also allows some
axioms that cannot be expressed in OWL 2. All of these approaches have the
advantage of fitting semantically into the original (first-order) OWL semantics,
which also means that existing reasoners for ontologies alone can be used for
reasoning in the combined knowledge bases. On the other hand, none of these
approaches can express nonmonotonic negation, and as such none cover the
motivating cases discussed in the introduction.

In the second group, which includes hybrid MKNF, the approach in [14]
combines ontologies and rules in a modular way, i.e. both parts and their se-
mantics are kept separate. The two reasoning engines nevertheless interact
bidirectionally (with some limitations in the direction of the ontology to rules)
via interfaces, and the dlvhex system [15] provides an implementation that gen-
eralises the approach by allowing multiple sources for external knowledge (with
differing semantics). This work has been extended in various ways (e.g., proba-
bilities, uncertainty, and priorities; for references see the related work section of
[14]). A related well-founded semantics [16] has been proposed with a computa-
tional complexity quite similar to the one of our well-founded MKNF semantics.
However, the integration is less tight, and the formalism restricts the transfer
of information from ontologies to rules. The only other well-founded seman-
tics approach is called hybrid programs [12] but this approach only allows the
transfer of information from the ontology to the rules. Thus, [12] is strictly less
expressive than the well-founded MKNF semantics. The advantage of such a
restriction is that, contrary to [16] and the well-founded MKNF semantics, the
semantics remains compatible with the standard semantics: consider two DL-
atoms B1 and B2 and an ontology that expresses that at least one of them is true
but none is a logical consequence of the ontology. Then, given rules p← B1 and
p← B2, p is obtained by [12] but not in our work or in the formalism described
by Eiter et. al. [14].

There are several further approaches related to stable models of logic pro-
grams. [8] uses an embedding into autoepistemic logic to tightly combine on-
tologies and rules. The approach is quite similar in spirit to hybrid MKNF [52].
In fact, the embedding with epistemic rule bodies and epistemic rule heads
seems to be the one most closely related, not only syntactically but also with
respect to the semantic consequences. However, a precise relation to hybrid
MKNF is far from obvious since an autoepistemic interpretation in [8] is a pair
of a first-order interpretations and a set of beliefs and both are not necessar-
ily related. DL+log [59] provides a combination of rules and ontologies that
separates predicates into rule and ontology predicates and evaluates the former
w.r.t. the answer set semantics and the latter w.r.t. a first-order semantics with
weak DL-safety, i.e. each variable in the head of a rule appears in an arbitrary
positive atom in the body of the rule. Like [52], [9] generalises [59] and sev-
eral earlier related works (e.g. [58]) within the framework of equilibrium logics.
Quite similar to [59] is [47], although this approach does not distinguish between
ontology and rules predicates. In fact, the work originates from [14] and it is
thus from the perspective of rules but permits a much tighter integration. Open
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answer set programming [25] extends rules with open domains and adds some
syntactic limitations for ensuring decidability. Based on that, an algorithm has
been provided for f-hybrid knowledge bases [17], i.e. a combination of ontologies
and rules without DL-safety but which limits predicates to tree-shapedness. A
loose layering of Prolog on top of DLs, employing four-valued logic, is presented
in [49].

An alternative way of introducing nonmonotonicity into ontologies is to en-
rich DLs with further syntactic constructs representing nonmonotonic features.
Among these approaches the most closely related to our work is Description Log-
ics of MKNF [11], which allows two modal operators in ontology axioms. An
algorithm was provided in [11] for ALC with MKNF, and it has been improved
in [34]. In [5, 21], circumscription was used for adding nonmonotonic reasoning
to DLs, and several other formalisms introducing defaults to ontologies exist
(e.g., [4]).

6. Conclusions and Future Work

Summarising, we have defined a well-founded semantics of (tightly inte-
grated) hybrid KBs that is sound w.r.t. the semantics defined in [52] for MKNF
KBs but has a strictly lower complexity. In particular, we obtain tractabil-
ity whenever the underlying description logic is tractable. To the best of our
knowledge, the well-founded MKNF semantics is the first approach for the com-
bination of arbitrary nonmonotonic rules and ontologies without any limitations
on the transfer of information between the two. Our approach coincides with
the first-order semantics of the DL fragment if there are no rules, and with the
well-founded semantics of normal programs if the DL-part is empty. Moreover,
we defined a construction for computing the well-founded MKNF model that is
also capable of detecting inconsistencies in a straightforward way.

Several lines of future research can be considered. First of all, we are work-
ing towards a general query-driven procedure capable of answering conjunctive
queries under the well-founded semantics of hybrid MKNF knowledge bases. In
fact, we already have some results on this issue: in [1], a procedure is defined
using tabled resolution that is sound and complete w.r.t. the well-founded se-
mantics defined here, and that is terminating for several classes of knowledge
bases. This procedure, which takes an oracle capable of answering queries in
the underlying description logic as a parameter, is able to answer DL-safe con-
junctive queries (i.e., conjunctive predicates with variables, where queries have
to be ground when processed in the ontology) returning all correct answer sub-
stitutions for variables in the query. An implementation of this procedure, that
is based on XSB Prolog19 for the tabling resolution, is already part of the CVS
version of XSB Prolog, and the description of this implementation can be found
at [20].

19http://xsb.sourceforge.net/
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Another line of current research is the specialisation of the semantics de-
fined here (with corresponding procedures and implementations) to particular
tractable description logics, as opposed to considering DLs in general. This spe-
cific study aims at EL++ [2] and ELP [39, 42, 48], one extension of EL++. We
intend to provide a transformation of such hybrid knowledge bases into rules
that can be used as input to a logic programming system capable of computing
the well-founded MKNF model of a set of rules. We have advanced already in
this work, by providing just that for EL+ [35].

Another topic that we are pursuing is the definition of a paraconsistent ver-
sion of the semantics defined here. It is worth noting that when inconsistencies
come from the combination of rules and the DL-part (i.e. for inconsistent KBs
with a consistent DL-part), the construction still yields some results, e.g., in Ex-
ample 11 we still derive that Bts is interesting. This suggests that the method
could be further exploited in the direction of defining a paraconsistent semantics
for hybrid KBs.
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