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Abstract. Multidimensional dynamic logic programs are a paradigm
which allows to express (partially) hierarchically ordered evolving knowl-
edge bases through (partially) ordered multi sets of logic programs and
allowing to solve contradictions among rules in different programs by al-
lowing rules in more important programs to reject rules in less important
ones. This class of programs extends the class of dynamic logic program
that provides meaning and semantics to sequences of logic programs. Re-
cently a semantics named refined stable model semantics has fixed some
counterintuitive behaviour of previously existing semantics for dynamic
logic programs. However, it is not possible to directly extend the def-
initions and concepts of the refined semantics to the multidimensional
case and hence more sophisticated principles and techniques are in or-
der. In this paper we face the problem of defining a proper semantics
for multidimensional dynamic logic programs by extending the idea of
well supported model to this class of programs and by showing that this
concept alone is enough for univocally characterizing a proper seman-
tics. We then show how the newly defined semantics coincides with the
refined one when applied to sequences of programs.

1 Introduction

In recent years some effort was devoted to explore the problem of how to update
knowledge bases represented by logic programs (LPs) with new rules. This allows,
for instance, to better use LPs for representing and reasoning with knowledge
that evolves in time, as required in several fields of application. The LPs updates
framework has been used, for instance, as the base of the MINERVA agent
architecture [14] and the action description language EAPs [3].

Different semantics have been proposed [1,2,5,6,12,15,17,19,18] that assign
meaning to arbitrary finite sequences P1, . . . , Pm of logic programs, usually called
dynamic logic programs (DyLPs), each program in the sequence representing a
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supervenient state of the world. The different states may represent different time
points, in which case P1 is an initial knowledge base, and the other Pis are sub-
sequent updates of the knowledge base or as knowledge coming from different
sources that are (totally) ordered according to some precedence, or as different
hierarchical instances where the subsequent programs represent more specific
information. The role of the semantics of DyLPs is to employ the relationships
among different states to precisely determine the meaning of the combined pro-
gram comprised of all individual programs at each state. Intuitively, one can add,
at the end of the sequence, newer rules or rules with precedence (arising from
newly acquired, more specific or preferred knowledge) leaving to the semantics
the task of ensuring that these added rules are in force, and that previous or less
specific rules are still valid (by inertia) only as far as possible, i.e. that they are
kept as long as they are not rejected. A rule is rejected whenever it is in conflict
with a newly added one (causal rejection of rules). Most of the semantics defined
for DyLPs [1,2,5,6,12,15,17,19,18] are based on such a concept of causal rejection.
Multidimensional dynamic logic programs (MDyLPs) [13] generalize DyLPs by
considering, instead of sequences, partially ordered multisets of programs. This
generalization allows to combine in a single framework the possibility of having
hierarchically ordered knowledge bases, with evolution in time. While most of the
existing semantics1 for DyLPs coincide on a large class of program updates (cf.
[6,11]), there are situations in which the set of (dynamic) stable models (SMs)
differs from one semantics to the other. Usually such counter-examples show a
counterintuitive behaviour of the semantics when dealing with particular kinds
of recursive dependencies. Also the existing semantics for MDyLPs exhibit such
counterintuitive behaviour as it emerges from the following example which also
illustrates a possible usage of MDyLPs.

Example 1. Roughly speaking, a joint venture is a society of companies that
is administrated by a delegated administrator. The administrator can pursue
his own policy independent of the requests of the partners, though taking the
directives of the partners into account. Suppose that two companies α and β
constitute a joint venture j whose customers are other companies. The two com-
panies give some directives to the administrator, represented by programs Pα1

and Pβ1. The administrator has his own policy which we represent by program
Pj1. Moreover, both the companies and the administrator update their policies
from time to time. We represent such updates, respectively, by programs Pαt,
Pβt and Pjt where t is a time-stamp. Since the policy of the administrator has
precedence over the directives of α and β, we assign precedence to the Pjs over
the other programs. At any given time tk, the decisions of the administrator are
described by the semantics of the MDyLP computed at the most recent node
Pjt. The administrator respects a specific directive from a partner unless it con-

1 In this paper we restrict our study to semantics generalizing the stable models se-
mantics and that are based on causal rejection of rules. Semantics not based on
causal rejection like the ones defined in [17,19], or semantics which use more general
forms of rejection like the one presented in [18] are outside the scope of this paper,
and are only briefly mentioned in the conclusions.



358 F. Banti et al.

flicts either with a more recent directive of the same partner or with any of the
clauses representing the updates. For any order x, if cost(x, z) is true then z
represents the estimated expenses that the j should face in order to satisfy the
commission x. Let us assume that the directive of β is to not decline any order
whose cost is within a given limit C. This is encoded by the single rule program:
Pβ1 : not decline(X) ← cost(X, Z), Z ≤ C. On the other hand, α assigns a de-
gree of reliability to some customers and wants to decline any commission asked
by a customer who is not reliable enough. So, Pα1 contains:

decline(X)← comm(X, Y ), reliability(Y, K), rel limit(Z), K ≤ Z.

plus a database of facts reliability(C, K) for customers C, and a fact rel limit(li)
for representing the limit under which a customer is considered to be unreliable.
The initial policy of the administrator is to accept any commission that is ac-
ceptable and not declined, having also a set of rules for establishing when a
commission is acceptable. Moreover, whenever several orders are received from
the same costumer, if one order is accepted, then the others can not be declined.
So, Pj1 contains some rules for acceptable(X) plus:

accept(X)← acceptable(X), not decline(X). (1)
not decline(X)← accept(K), comm(X, Y ), comm(K, Y ). (2)

Let us suppose a commission x1 arrives from the company y, the commission is
acceptable, and the reliability of y is high enough. Hence the order is accepted.
At time t2 the administrator updates his policy by deciding that no commission
from the customer y will be declined. This is done by updating Pj1 with the
program Pj2 with the rule: not decline(X)← comm(X, y).

At time t3, α augments the limit of reliability. This is done by the update
Pα3 with the two facts not rel limit(li) and rel limit(new li). Suppose that at
time t4 a commission x2 arrives from y and the reliability of y is under the
new limit of reliability. The directives in Pα1 say to decline the commission.
Nevertheless the policy of the administrator encoded by the clause in Pj2 conflicts
with this directive. Since Pj2 has precedence over Pα1, the latter is rejected and
the order is accepted. Note how the partially ordered programs are used to
represent precedence among rules coming from different sources, as well as to
represent updates of rules.

So far we provided an example of how multidimensional dynamic logic pro-
grams work. We show now a problematic situation involving cyclic dependencies.
At time t5, another commission x3 arrives from a new costumer y2. The reliabil-
ity of y2 is below the current limit, but the estimated cost of x3 is below the limit
C and, moreover x3 is acceptable. Hence the directives of α and β collide. Since
the directives of the two partners are not comparable, none can overcome the
other. From an intuitive point of view the policy of j should not allow to judge
whether the order should be declined or not. Hence, intuitively the semantics
of the considered MDyLP should allow the administrator to detect the conflict
and specify, by a new update, whether to decline the new order or accept it.
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Unfortunately, none of the existing semantics for MDyLPs matches such
intuition. The rules 1 and 2 have cyclic instances for X = K. Such a cycle is
not relevant in the other examined cases. For X = K = x3, instead, the rule 2
rejects the rule in Pα1 thus allowing the semantics to have a model where the
commission x3 is not declined.

It is clearly possible to find also much more complex examples involving com-
plicated self dependencies among rules. Similar examples are known also in the
case of DyLPs. In [1] the authors propose the refined extension principle,which
should be satisfied by a proper semantics for DyLPs in order to avoid such coun-
terintuitive behaviour and then proposed the refined stable model semantics for
DyLPs that complies with such a principle. Unfortunately, as we show in sec-
tion 3, the definition of the refined semantics cannot be extended directly to
MDyLPs. Moreover, the refined extension principle is too weak for uniquely de-
termining one “right” semantics. For example, the trivial semantics that assigns
to each DyLP the empty set of models, satisfies the principle, which is obviously
unsatisfactory. We hence need stronger new criteria and techniques.

We begin this paper by, after recalling preliminary notions in Section 2,
providing insights of the existing semantics for DyLPs and MDyLPs and explain
why a new approach to the problem, based on stronger criteria, is in order.
Then, in Section 4 we introduce such a criterium by extending the notion of
well-supported model (WS model) [4,7] to DyLPs and MDyLPs. Fages [7] shows
the equivalence between the concept of stable model and WS model, i.e. given
a program P , an interpretation M is a stable model of P iff it is a WS model of
P . By extending the definition of well supported model to MDyLPs, we obtain
a new semantics for such class of programs. We also show how well supported
models do not show counterintuitive behaviour in the illustrated example and,
moreover, they provide new insights of the matrix of the behaviour of the other
semantics for MDyLPs. Finally, we show that the well supported model semantics
coincides with the refined semantics of [1] if we restrict to sequences of programs.
For this reason we refer to the defined semantics also as the refined semantics for
MDyLPs. Well-supported models do already provide a semantics for MDyLPs.
Such a descriptive characterization, however, is not completely satisfactory for
several reasons, the main one being the problem of finding a reasonable algorithm
for its computation. So, in Section 5, we provide an alternative, though equivalent
and more traditional characterization based on a fixpoint operator. We then
establish relationships between the well supported semantics and the existing
semantics for MDyLPs, and show that any WS model is also a model in the
existing semantics.

2 Background and Preliminaries

In the following, a propositional language L is a (possibly countably infinite) set
of atoms. A literal in L is an atom A of L or the (default) negation not A of an
atom of L. We say that A is the default complement of not A and vice versa.
Given a set of literals I, we say a literal L is true (resp. false) in I iff L ∈ I
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(resp. not L ∈ I). In the sequel a (two-valued) interpretation is a set of literals
of L such that for each atom A ∈ L exactly one of A or not A belongs to I. To
simplify the notation, whenever it is clear that we are talking about two-valued
interpretations we omit all its negative literals. Let L and L′ be two languages
such that L ⊂ L′. Let M be an interpretation over L′. We use the notation M |L
for the set of literals of M in L. Given two interpretations M and M∗ over L′,
we use the notation M ≡ |LM∗ for M |L ≡M∗|L.

2.1 Well-Supported Models

The semantic analysis which we make in this paper rests on the notion of level
mapping over a set of atoms L, where a level mapping � is a function from L to
the set of natural numbers. We also lift � to negative literals of the form not A,
where A is an element of L, by setting �(not A) = �(A). Given a conjunction
of literals C = L1, . . . , Ln we further extend � by assigning to C the value
�(Li), where i is chosen such that the value of �(Li) is maximal, i.e. �(C) =
max({�(Li) : Li ∈ C}). For convenience, and by slight abuse of notation,
we assign the value −1 to the empty conjunction of literals. Our approach is
stimulated by recent results on uniform characterizations of different semantics
for LPs in terms of level mappings as introduced in [10] and extended in [9].
This perspective provides an additional tool and guidelines on how to obtain
reasonable new semantics for new classes of programs.

A normal logic program over a language L is any (possibly countably infinite)
set of rules of the form A ← body, where A is any atom of L and body is any
conjunction of literals of L. Several different (two-valued) semantics are being
used for assigning meaning to programs, including the supported model semantics
[4], the minimal supported model semantics [4] and the stable model semantics
[8]. Given any program P , the set of all supported models (SU(P )), the set of all
minimal supported models (MSU(P )) and the set of all stable models (SM(P ))
of P are related by SU(P ) ⊇MSU(P ) ⊇ SM(P ). For large classes of programs
these sets of models coincide, but there are particular cases where the inclusions
above are strict.

Example 2. Consider the program P : A ← A. P has unique SM ∅ which
coincides with the unique minimal supported model. It has {A} as a second
supported model. All the cited semantics have ∅ as unique model of the program
consisting of the empty set of clauses. Hence, for the supported model semantics
adding tautologies of the form A← A to a program may change its semantics.

Example 3. Consider now P1 : A ← not A. A← A. P1 has no stable models
but has {A} as unique minimal supported model. The program P2 : A← not A,
has no minimal supported model. Hence, again, the introduction of the tautology
A← A has changed the semantics of the program.

Stable models for normal LPs can be characterized in terms of level mappings,
and in this disguise they are termed well-supported models [7]. A model is well-
supported iff it is possible to define a level mapping over the literals of the
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language, such that a literal A belongs to the model iff there is a rule in the
program whose head is A, whose body is true in the considered model and the
level of A is greater than the level of any atom in the body. Formally:

Definition 1. Let P be a normal logic program over the language L. An in-
terpretation M over L is a well-supported model of P iff i) M is a model
of P and ii) there exists a level mapping � defined over L, such that for each
atom A in M there exists a rule A← A1, . . . , An, not B1, . . . , not Bm with M |=
A1, . . . , An, not B1, . . . , not Bm and �(A) > �(Ai) for each Ai with 1 ≤ i ≤ n.

As formalized in the following result of [7], the WS models of a program P
coincide with its stable models.

Theorem 1. Let P be a normal logic program over L. An interpretation M
over L is a well-supported model of P iff it is a stable model of P .

2.2 Semantics for DyLPs and MDyLPs

To represent negative information in logic programs and their updates, DyLPs
use generalized logic programs (GLPs) [16], which allow for default negation not
only in the premises of rules but also in their heads. A GLP over a language
L is any (possibly countably infinite) set of rules of the form L0 ← L1, . . . , Ln,
where each Li is a literal of L. Given a rule τ as above, by hd(τ) we mean L0

and by B(τ) we mean {L1, . . . , Ln}.
A dynamic logic program P over a language L is a finite sequence P1, . . . , Pm,

where all the Pi’s are GLPs over L. We call the Pis updates. A multidimensional
dynamic logic program MP is any partially ordered finite multiset of GLPs.
Let M be a set of indices for the elements of MP , and let ≺ be the partial
order defined over MP. For any index i, by Pi we denote the element of MP
associated with i, and we call it an update. We often use the notation i ≺ j
instead of Pi ≺ Pj . Let τ and η be two rules appearing in MP. As an abuse
of notation, we also use the notation τ ≺ η for denoting that τ and η belong,
respectively, to the updates Pi and Pj with Pi ≺ Pj . Two rules τ and η are said
to be not comparable iff neither τ ≺ η nor η ≺ τ is true. For elements Pi and
Pj of M, we say that Pi is less recent than Pj iff i ≺ j. Let Pn be an update
of MP . The genealogy of Pn, denoted by MPn, is the subset of the elements
of MP which are less recent than Pj plus Pn itself. We use ρ (P) to denote
the multiset of all rules appearing in MP and ρ(Pn) to denote the multiset of
all rules appearing in MPn. Note that, if the order defined over the MDyLP
MP consisting of m elements is a total order, thenMP is the DyLP P1, . . . , Pm

where Pi denotes the ith element ofMP such that Pi ≺ Pj iff i < j.
The dynamic stable models semantics for MDyLPs (DS) is defined in [13]

by assigning to each MDyLP a set of dynamic stable models. The basic idea
of the semantics is that, if a later rule τ has a true body, then former rules in
conflict with τ are rejected. Moreover, any atom A for which there is no rule
with true body is considered false by default. The semantics is then defined by a
fixpoint equation that, given an interpretation I, tests whether I has exactly the
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consequences obtained after removing from the multiset ρ (Pn) all the rejected
rules, and imposing all the default assumptions given I. Formally:

Definition 2. Let MP be any MDyLP over language L , Pn be an update of
MP and M be a two valued interpretation. Define

Default(MPn, M) = {not A |	 ∃A← body ∈ ρ (Pn) : body ⊆M}
Rej(MPn, M) = {τ ∈ Pi| ∃ η ∈ Pj : i ≺ j, τ �� η, B(η) ⊆M},

where τ �� η means that τ and η are conflicting rules, i.e. the head of τ is the
default complement of the head of η. Then M is a dynamic stable model of
MPat Pn iff M is a fixpoint of Γ n

MP , defined by

Γ n
MP(M) = least (ρ (Pn) \Rej(MPn, M) ∪Default(MPn, M))

where least(P ) denotes the least Herbrand model of the definite program obtained
by considering each negative literal not A in P as a new atom2.

Other semantics for either DyLPs and MDyLPs based on causal rejection
are the justified update (JU) [15] and the update programs semantics (UP) [6].
The latter is equivalent to the semantics proposed in [5]. All these semantics
are extensions of the stable model semantics for normal and generalized LPs [8];
relations among them have been studied in [11,12], and the main result is as
follows. Given any MDyLP MP, let UP(P),JU(P),DS(P) and be the set of
models of P according to, respectively, the update programs, the justified up-
date, the dynamic stable for MDyLPs. Then, as showed in [12,11] the following
(possibly strict) inclusions hold:

UP(P) ⊇ JU(P) ⊇ DS(P) (3)

3 Some Considerations on the Existing Semantics

As shown in [11] and [6], all the cited semantics for MDyLPs based on causal
rejection coincide on large classes of programs. The examples where these seman-
tics differ involve cyclic dependencies among rules, similar to the one illustrated
in the example 1. As stated in the introduction, all the existing semantics for
MDyLPs (wrongly) coincide on the program of example 1, i.e. they allow the
program to have a model where the commission is not declined. Note that this
is a consequence of the cycle introduced by the instances of the rules 1 and 2. In
fact, the MDyLP obtained by removing the mentioned instances of the rules has
no model according to any of the cited semantics. Indeed these two rules that
should not affect the semantics allow somehow an undesired model.

Analogous behaviours are known also in the case of DyLPs as discussed in [1],
where examples are given where cycles or even tautologies generate counterintu-
itive behaviour. In particular, all the semantics show counterintuitive behaviour
2 Whenever clear from the context we will omit the MP in any of the above defined

operators.
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in cases where conflicting rules appear in the same update. In [1], the authors
introduce the refined extension principle as a principle that any semantics should
satisfy in order to avoid such behaviour. Moreover, the refined dynamic stable
model semantics [1] or simply refined semantics for DyLPs is defined. Such se-
mantics obeys the refined extension principle and, in fact, it avoids the mentioned
counterintuitive behaviour. The definition of the refined semantics is the same of
definition 2 but replacing the MDyLPMP with a DyLP P and replacing i ≺ j
in the rejection operator by i ≤ j. Intuitively, whenever rules with true body
and with heads, respectively, A and notA appear in the same update Pi they
reject each other. Moreover they reject also all the previous rules with either
head A and not A, and finally they also reject the default assumption not A.
Hence, unless a new rule with head A or not A and true body appears in a more
recent update, the considered program has no model because it is not possible
to derive neither A nor not A. The refined semantics (RS) for DyLPs is, among
the cited semantics, the one that admits the less number of models. Hence, if we
restrict to DyLPs, we can refine the inclusions 2.2 as follows

UP(P) ⊇ JU(P) ⊇ DS(P) ⊇ RS(P) (4)

Unfortunately, the technique of mutual rejection of rules in the same state cannot
be extended to the class of MDyLPs. In fact, if we extend directly the definition
of refined model to MDyLPs, Example 1 still exhibits an undesired model. This
originates from the fact that, in multidimensional case, unlike in the linear one,
two rules may be non comparable even if they do not belong to the same up-
date. If, instead we allow non comparable rules to reject each other, the obtained
semantics allows too few models. Let us consider for instance the following pro-
gramMP P1 : A P2 : not A P3 : A P4 : not A P1 ≺ P2 P3 ≺ P4 According to
the proposal above, the rules in P1 and P4 reject each other, as well as the ones
in P2 and P3. The default assumption is rejected as well and, as a result, we
cannot derive neither A nor not A and henceMP would have no model. We re-
gard this as counterintuitive, since, according to causal rejection, the facts A are
rejected and {not A} should be the unique model of the program. Moreover, this
last counterintuitive behavior is not captured by the refined extension principle
since this principle only ensures that, whenever it is satisfied, the introduction
of particular kind of rules does not allow undesired models. Here the problem
is exactly the opposite: the proposed semantics would have too few models. We
conclude that it is simply not possible to hack the definition of the refined se-
mantics in order to apply it to MDyLPs nor can we refer to the refined extension
principle as a tool for univocally determine a semantics. What is needed is an
entirely new methodology to attack the problem. The next section introduces
such a methodology.

4 Well-Supported Models for MDyLPs

As we see from equation (4), the existing semantics for DyLPs can be ordered in
a sequence where each semantics is a refinement of the previous one. Going right



364 F. Banti et al.

in the sequence, the conditions for an interpretation to be accepted as a model
become stricter. It seems that research is trying to discard bad models from the
semantics and to keep only good models. Is this really the case? Moreover, can we
consider the sequence ended by the refined semantics, or do we need to further
refine it? To answer these questions we need a formal definition of what we
mean by good model. Recalling section 2.1, we can see an interesting historical
parallelism between the evolution of semantics for DyLPs and the evolution of
two-valued semantics for normal LPs, where the supported, minimal supported
and stable model semantics are successive refinements. We also note similarities
between examples 1 and 2, 3: in them, rules that should not play any semantic
role change the behavior of some semantics by introducing more models. In the
static case, this behaviour is rectified by the introduction of the concept of well-
supported model. Guided by this historical perspective, we extend the notion of
WS model to MDyLPs.

We first note that in the definition of well-supported models for normal LPs
only the level of the positive literals in the body of a rule is considered. This
happens because within normal LPs only positive literals are derived by rules,
and the negative ones follow by negation by default. For DyLPs and MDyLPs,
however, also negative literals can be derived by rules, since we allow negative
literals in rule heads. More importantly, in the static case a rule plays a role
only for deciding whether or not a given literal should be true or not. In the
dynamic case, a rule is also used for rejecting other rules. Hence the concept of
well-supportedness should be applied not only to the derivation of literals but
also to the rejection of rules. More precisely, we require well-supported rejection:
a rule can reject another rule in a previous update iff the body of the rejecting
rule is true and the level of the body of the rejecting rule is less than the level
of its head. The following definition formalizes this idea using level mappings.

Definition 3. Let MP be any MDyLP over some language L, let Pn be an
update of MP, � be any level mapping over L and M be any two-valued inter-
pretation over L. Define the set of rejected rules w.r.t. � by3

Rej�(MP , M, n) = {τ ∈ Pi | ∃η ∈ Pj : i ≺ j  n, τ �� η,
M |= body(η), �(hd(η)) > �(B(η)) }.

Given the considerations above and Definition 3, it is now easy to extend the
concept of WS model to MDyLPs. An interpretation M is a WS model if it is
possible to find a level mapping such that: M is a model of all the rules that
are not rejected w.r.t. the given level mapping and such that, for each atom A
which is true in M , a non-rejected rule with head A exists, whose body is true
and has level less than the level of A. The formal definition follows.

Definition 4. Let MP be any MDyLP over some language L and let M be
an interpretation over L, Pn be an update of M and M be any interpretation
over L. We say that M is a well-supported model at Pn iff there exists a
3 Hereafter, we use the simplified notation Rej�(M, n) whenever this causes no ambi-

guity.
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level mapping � over L such that i) M is a model of ρ(P ) \ Rej�(M, n) and ii)
∀ A ∈ M ∃ τ ∈ ρ(P ) \ Rej�(M, n) such that hd(τ) = A, �(A) > �(B(τ)) and τ
is supported by M .

If we consider again the program of the example 1, we find that the model where
the commission x3 is not declined is not a well supported model. This also implies
that the well supported model semantics for MDyLPs does not coincide with any
of the existing semantics for such class of programs. If the partial order defined
over the programs is a total one, then the considered program is a DyLP. In this
case, it is possible to prove the analogue of Theorem 1.

Theorem 2. Let P be any DyLP and M be an interpretation. Then M is a
refined stable model of P iff it is a well-supported model of P.

For this reason, we refer to the defined semantics also as to the the refined
semantics for MDyLPs. We have shown that the WS models coincide with the
refined SMs for a DyLP.

Some comparisons of the refined semantics to other semantics for MDyLPs
are in order. We would expect that any well supported model of a given program
is also a model in any of the existing semantics for MDyLPs. In fact this result
holds, as stated by the next theorem.

Theorem 3. Let MP be any MDyLPs in the language L, Pn be an update of
MP and M be a well supported model of MP at Pn. Then M is also a model
of MP in any of the semantics defined in [13,5,11].

It is now easy to understand the different behaviour of the considered semantics.
Two distinguished semantics differ for those cases when one semantics is a better
approximation of the semantics of well-supported models than the other one.

5 Fixpoint Characterization for Well-Supported Models
of MDyLPs

Well-supported models define a semantics for MDyLPs. However, this charac-
terization is purely descriptive, which is obviously not entirely satisfactory for
computational purposes. Moreover, to understand from this definition whether a
given interpretation is a WS model of a given MDyLP, we have to face the prob-
lem of finding a corresponding level mapping or show that such a level mapping
does not exist. This does not seem to be a reasonable approach for computing
the semantics and, furthermore, may not lead to quick ways of testing whether
a given interpretation is a well-supported model or not. For these reasons, we
present an alternative characterization based on a fixpoint operator. We charac-
terize our models as the fixpoints of an operator defined from interpretations to
interpretations, in the spirit of the Gelfond-Lifschitz operator [8]. Given a pro-
gramMP and an update Pn with index n, we associate with any pair (MP , n)
an operator Γ S

(MP,n) as in Definition 7 below. We then obtain a characterization
of the well-supported models ofMP as the fixpoints of this operator.
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The semantics of a MDyLP MP is defined with respect to the updates
Pn of MP. To establish the semantics consider only the genealogy of Pn. The
underlying idea of the semantics is to collect in a single program all the rules of
the given MDyLP and add new rules and predicates that specify whether a rule
is rejected or not.

LetMP be a MDyLP over L, Pj , Pk be programs ofMP and j ≺ k. If there
exists a rule γ in Pk with head L, then every rule in Pj with head not L could
be rejected, depending on whether the body of γ is true or not. Formally:

Definition 5. Let MP be an MDyLP over the language L. Add new atoms
rej(L, i) not belonging to L, where L is a literal in L and i ranges over the indices
of the updates of MP. The set of rejecting rules over the extended language is
then defined as follows:

Rj(MP) = { rej(not L, j) ← body. | L← body. ∈ Pk ∧ j ≺ k }
Let MP be a multidimensional DyLP over L, n be an index, L be a literal of
L, M be an interpretation over L, Pi, Pj and Pk be programs of MPn and τ i

and ηj be rules in, respectively Pi and Pj . We say that ηj is a threat for L in
i, or alternatively that L is threatened by ηj iff the head of ηj is not L, its body
is true in M , and j 	≺ i. We say that ηj is a threat for some other rule τ i in Pi

iff it is a threat for its head in i. A literal (rule) is considered to be strictly safe
in Pi iff all its threats are rejected. Intuitively, derivations should only be made
from safe rules. The main idea behind our definition is that a rule can be used
to derive consequences iff it has already been established that the rule is safe. To
achieve this result, we first consider the GLP given by the union of all the rules
in MP with a new atom in the body of each rule which is satisfied only if the
considered rule is safe. Then we introduce rules specifying which threats should
be rejected in order to consider a literal (rule) as safe. Finally we introduce rules
determining when a threat is rejected. Formally:

Definition 6. Let MP be any multidimensional dynamic logic program in the
language L. Add new atoms safe(L, i) not belonging to L, where L is a literal
in L and i ranges over the indices of the updates ofMP. We denote by Σ(MP)
the following set of rules.

Σ(MP) = {L← body, safe(L, i)|L← body ∈ Pi}
Let M be an interpretation over L. The set of conditions for a literal L to be
strictly safe at Pi is defined as follows.

condS(MP, M, L, i) = {rej(not L, j) | ∃η ∈ Pj , j 	≺ i, M |= B(η)∧
hd(η) = not L}

By abuse of notation, condS(MP, M, L, i) also denotes the conjunction of all
the literals in condS(MP , M, L, i). The set of strictly safe rules is defined as

SafeS(MP , M)) = {safe(L, i)← condS(MP, M, L, i)|∃ τ ∈ Pi : hd(τ) = L}.
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Having specified the condition for a rule to be allowed to derive literals, we then
add the set of default assumptions and compute the least model of the obtained
program. Finally we discard the auxiliary literals computed.

Definition 7. Let MP be any multidimensional dynamic logic program in the
language L, Pn be an update of MP and M be an interpretation over L. We
define the operator Γ S

(MP,n) on interpretations over L as follows.

Γ S
(MP,n)(I) = least (Σ(MPn) ∪ SafeS(MPn, I) ∪

Rj(MPn) ∪Default(MPn, I) )|L
We are finally ready to define the refined semantics for MDyLPs. A refined
multi stable model (RMSM) of an MDyLP at Pn is any fixpoint of the Γ S

(MP,n)

operator.

Definition 8. Let MP be any multidimensional dynamic logic program in the
language L, Pn be an element of MP and M be any interpretation over L. We
say that M is a refined multi stable model of MP at Pn iff M = Γ S

(MP,n)(M).

The goal of Definition 8 is to provide a fixpoint characterization of the WS
models of Definition 4. Indeed, this has been accomplished, as shown by the
following theorem.

Theorem 4. Let MP be any MDyLP in the language L, n be an index and M
be any two valued interpretation over L. Then M is a refined multi stable model
of MP at Pn iff M is a well-supported model of MP at Pn.

6 Conclusions and Future Research

The initial purpose of the paper was to provide a semantics for MDyLPs based
on causal rejection that can be properly considered to be the stable models-
like semantics for such classes of programs. To obtain this, we extended the
definition of well-supported model to the dynamic case. It turns out that, for
DyLPs, our characterization coincides with the refined semantics. We provided
also a fixpoint characterization of such semantics and established relationships
between the new semantics and existing ones. Is it possible to conclude that the
refined semantics is the proper extension of the SMs semantics to DyLPs and
MDyLPs? Unfortunately there exists no theoretical result which is equivalent
to the statement “this is the correct semantics”. Nevertheless we claim that the
characterizations given herein provide some evidence that further refinements of
the semantics will not be necessary.

As mentioned in the introduction, there exist stable models-like semantics
for LP updates [17,19,18] which are not (or at least not exclusively) based on
the concept of causal rejection. Unlike those based on causal rejection, such se-
mantics significantly differ from the refined semantics, and among each other,
in properties, behaviors and underlying concepts. Comparisons of the semantics
defined in [17,19] can be found in [12]. Given the underlying differences, it is pos-
sible that in the future specific application areas will be found where different
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approaches to LP updates are needed for different applications. It is our strong
opinion that DyLPs and MDyLPs can be a useful tool in several application
areas, in particular in those areas related to web-oriented applications for AI
where powerful reasoning capabilities have to be applied in highly dynamic en-
vironments and where merging knowledge from different sources is an important
and challenging task.
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