

KEYWORD SEARCH INTERFACE FOR PATH QUERIES ON ONTOLOGY

by

SUJEETH THIRUMALAI

(Under the Direction of Amit P. Sheth & Lakshmish M. Ramaswamy)

ABSTRACT

Today’s semantic web has a growing wealth of machine understandable metadata

represented using markup languages like RDF, XML or OWL. There exists a plethora of query

languages that aid is searching such data models. However, most real world searches involve

queries expressed in natural language as it allows the user to get information without using

complex formal query languages. This paper presents a search interface for path queries on

ontologies, which accepts keywords and finds answers where each answer is a subgraph

containing paths between nodes that match the keywords. Our approach for building such a

system comprises of (1) a full-text search index for triples in the ontology (2) lexical and

semantic query expansion to match user keywords to entities in the ontology, and (3) an

algorithm which uses the Sparq2l path sequence indices to compute the answer subgraphs.

INDEX WORDS: Semantic Web, Path Query, Keyword Search, Ontology

KEYWORD SEARCH INTERFACE FOR PATH QUERIES ON ONTOLOGY

by

SUJEETH THIRUMALAI

B.E., University of Madras, India, 2003

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2007

© 2007

Sujeeth Thirumalai

All Rights Reserved

KEYWORD SEARCH INTERFACE FOR PATH QUERIES ON ONTOLOGY

by

SUJEETH THIRUMALAI

Major Professors: Amit P. Sheth

 Lakshmish M. Ramaswamy

Committee: Kang Li

Prashant Doshi

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2007

iv

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisors Dr. Amit Sheth & Dr. Lakshmish

Ramaswamy for their valuable time and suggestions rendered during the course of this work. I

am most grateful to Kemafor Anyanwu, whose guidance was pivotal in the completion of this

work. Thanks are also due to my friends at UGA who have always been supportive and cared for

my welfare. Finally, I am very thankful to my parents without whose love, support and

encouragement none of this would be possible.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... iv

LIST OF TABLES.. vii

LIST OF FIGURES ... viii

CHAPTER

1 INTRODUCTION ..1

1.1 MOTIVATION ..3

1.2 PROBLEM DEFINITION ...5

1.3 CONTRIBUTIONS ..5

2 RELATED WORK & BACKGROUND...7

2.1 RELATED WORK ...7

2.2 BACKGROUND ..11

3 SYSTEM ARCHITECTURE ..17

3.1 TRIPLE SEARCH INDEX ...18

3.2 QUERY PROCESSING ...21

4 EVALUATION ...25

4.1 EXPERIMENT SETUP ...25

4.2 ALGORITHM CORRECTNESS ..32

5 CONCLUSION & FUTURE WORK ...34

REFERENCES ..35

vi

APPENDICES

A SCREENSHOTS OF THE SEARCH INTERFACE ..39

vii

LIST OF TABLES

Page

1. 'Insider Threat' dataset general statistics ..26

2. 'US Politics' dataset general statistics ..26

3. Query Execution Times for Insider Threat dataset ..27

4. Query Execution Times for US Politics dataset ..27

5. Query Execution Time over Different Dataset ... 31

viii

LIST OF FIGURES

Page

1. Motivating Scenario .. 4

2. Single source all path algorithm ..12

3. Path Summarization ...14

4. System Architecture ...18

5. Multi Source Path Expression Algorithm ..24

6. Insider Threat Dataset: Query Processing Time versus Number of Solved Nodes 29

7. US Politics Dataset: Processing Time versus Number of Solved Nodes 29

8. Comparing Query Execution Times over Different Datasets .. 31

9. Query: "Council Infiltration, Middle East" .. 39

10. Query: "Leader of, Philippines" ... 40

11. Query: "International fund, connected with, saddam hussein" .. 41

12. Query: "Mark Sanford, South Carolina" .. 42

13. Query: "Larry Craig, veto, Governor Quinn" .. 43

14. Query: "Arnold, registers, lawsuit" .. 44

 1

Chapter 1

INTRODUCTION

Semantic Web (SW) [36] is as an extension to the current web where the content is

machine understandable thus facilitating easy information integration. The Resource

Description Framework (RDF) [1] is the core of W3C's SW language and technologies

based on RDF provide the primary capabilities for building most SW applications. The

current web has a growing availability of semantic metadata created from large

repositories of information. Recent notable efforts like DBpedia [2] and Yago [3] extract

structural information from Wikipedia [37], a large and popular community created

encyclopedia, and use RDF to represent the information. In RDF, each resource has a

unique identifier called the URI and statements are made using the resource URIs. RDF

based technologies; especially an RDF query language can provide users to express

complex queries against these repositories. An example of a complex query as given in

[24] tries to “find soccer players with number 11 on their jersey, who play in a club

whose stadium has a capacity of more than 40000 people and were born in a country with

more than 10 million inhabitants”. Such queries cannot be asked against Web-based data

using traditional search engines. It is the representation of Web-based data in richer RDF

form, and the expressiveness of RDF query languages which enables such a querying

capability.

 2

Several languages have been proposed for querying RDF. For example, the

SPARQL query language [25] which just recently became a recommendation of the

World Wide Web Consortium (W3C) is based on triple matching. However most real

world searches, as done by common users, involve queries represented in natural

language as this allows users to easily express their information needs without the

knowledge of complex query languages, the underlying schema and the domain

vocabulary. For example, for the query “Who is the author of “Introduction to

Algorithms”?” the user needs schematic information on the relationship between the

concepts book and author in order to construct the correct formal query. Hence, the main

challenge towards providing user-friendly search on ontology is to provide an interface

that accepts keywords and maps it to some internal graph representation of class, instance

or relationship in the ontology. The mapped sub-graph is then used for processing the

query. We propose a minimized NLP extension to full-text search indexing of the

ontology to accomplish the goal of mapping user keywords to ontological entities. The

triples are processed to include synonyms, derived words (stemming) & tokenized

compound words (example: authorOf) in the search index.

There is an interesting class of query that is common especially in investigative

applications where the user is interested in determining paths of associations between

seemingly unrelated entities in the knowledgebase. While most languages support

pattern-matching queries, there are few, like [5, 6, and 39] that provide support for such

path queries. In the above mentioned languages, the searches are made using the node

URI and the user has to adhere to a specified syntax for expressing the query. In this

work, we propose a system that allows users to express path query search terms using

 3

keywords. The answer to the keywords search is a set of subgraphs from the dataset

where each subgraph includes paths involving entities that matched the keywords. A

formal definition of the problem statement is presented in the following section.

1.1 MOTIVATION

Consider the scenario where the user is researching on the American Civil War. Suppose

that he is looking for an association between the American Civil War and writings of the

Greek historian Thucydides. The simple text search provided by Wikipedia using the

keywords “American Civil War” “Thucydides” retrieves articles that have relevance

scores not greater than 8.3%. As is common with such queries, the association might

involve multiple entities which may be spread across the information web. Traditional

search indices do not capture such link information.

 4

Figure 1: Motivating Scenario

This means that the user still has to sift through the result pages and traverse internal

links to determine the association. Representation of facts from Wikipedia in RDF allows

complex queries that make use of the structure of information to be constructed. DBpedia

provides a SPARQL endpoint [41] where users can enter formal queries to search against

structured information extracted from Wikipedia. Similarly, Panto takes in a natural

language query and transforms it into an ontology query pattern. SPARQL based

interfaces can only provide answer to pattern matching queries where the user has the

knowledge of the relationships that connect the entities in the query. When the user does

not know the relations involved in the association, the query belongs to the class of Path

queries. Systems such as Panto cannot answer such queries.

 5

1.2 PROBLEM DEFINITION

Formally, the problem we are trying to solve may be defined as follows:

Similar to [8], given a directed graph G = (V, E) where each node v∈V and edge e∈E has

a label (URI) associated with it, we are concerned with querying this graph using

keywords. A keyword search query q consists of a list of n keywords (k1, k2… kn). The

answer to query q is the set of paths in G where the end point of each path is a node v∈V

that matched a user keyword based on one of the following criteria:

• There exists some keyword k ∈(k1, k2… kn) that matches label of node v either

lexically or on semantic query expansion. For example, the keyword “democratic

convention” lexically matches the entity “democratic national convention”. The

keyword “national assembly” matches “national convention” through semantic

query expansion of assembly into convention.

• Node v is the subject/object of the ontological triple whose predicate label

matches some keyword lexically or on semantic query expansion. For example,

the keyword “author” lexically matches the relationship “authorOf”. The keyword

“writer” matches the relationship “authorOf” through query expansion. In both

cases, the node v that is the node associated through the predicate “authorOf”.

1.3 CONTRIBUTIONS

The contributions of this work are given below:

 6

• We present a full-text search index for ontology triples that provides matching

capabilities based on semantic and morphological expansion of terms used for

indexing the triple.

• Given a set of nodes based on text matches, we propose a method to construct the

set of answer paths using the algorithm to solve the multi-source path expression

problem.

The rest of the thesis is organized as follows. We survey related work and background

information in Chapter 2. In Chapter 3, we introduce our system architecture and discuss

the algorithm to solve the multi-source path expression problem. We discuss system

evaluation in Chapter 4. Experiments over two datasets indicate that the query execution

time is directly proportional to the number of entities involved in the query. Also, we

note that the query execution time increases with the size of the dataset. Finally, we

discuss future work and conclude in Chapter 5.

 7

Chapter 2

RELATED WORK & BACKGROUND

2.1 RELATED WORK

Information search is one of the most popular applications with significant room for

improvement. The availability of large amounts of structured, machine understandable

information on the semantic web offers opportunities for improving traditional search.

The Resource Description Framework (RDF) [1] is a powerful data model that it the core

of W3C's Semantic Web architectural layers. It is a standard that provides the features for

interoperability of data & machine understandable semantics for metadata. There exist

several RDF query languages including RQL, RDQL [40], SeRQL, TRIPLE and

SPARQL. However most real world searches, as done by common users, involve queries

represented in natural language, such as English, that they are familiar with. This allows

for users to express their information needs without the knowledge of the underlying

schema or vocabulary of the ontologies.

 The problem of natural language interfaces to knowledge bases has been

extensively studied for years. [30, 29, 31] allow for keyword search over relational

databases. [15, 13] provide a natural language interface to search over XML. [13] uses

the tree structure of XML in translating the search keywords into XQuery [32]

expressions. In this work, we present a keyword search interface over RDF ontology.

 8

Such ontologies are directed acyclic graphs and hence the techniques used for XML

cannot be applied.

Systems like [10, 33] are based on formal querying languages, a few allow the

querying of Semantic Web repositories using keyword queries or rdf path fragments. Our

system is different from the above systems, as it supports keyword search not only on

literals, but also on related words of instances and relationships. The systems allow users

to enter only a single keyword or literal per search, unlike our system which allows

multiple keywords in a single search. The key feature of our system is that it supports

searches on related words of instances and relations, unlike the direct or pattern based

keyword searches. Additionally, our system displays search results in the form of paths.

Kowari [10] is a native RDF store that stores information using a RDF database.

It allows users to query using iTQL RDF query language, which is similar to SQL.

Sesame is a RDF database with support for RDF Schema inference and querying. It

supports several query languages including SeRQL. Jena provides persistent storage of

RDF using relational database. It provides SPARQL query language support for

accessing parts of RDF/RDF or OWL and inference capabilities through SPARQL’s

inference engine. Swoogle [11] is a search and retrieval system for searching ontologies

on the web. [11] uses a ranking scheme that utilizes relationship weights between

Semantic Web Documents (SWD) to model the probability of being explored. Swoogle

allows keyword searches on classes, literals or properties. The system uses a spread

activation algorithm to find related instances or literals for a given set of concepts using a

initial set of relationship weights.

 9

QuizRDF [12] is another search engine that allows keyword searches on

annotated documents. The searches in QuizRDF are limited to literals. Beagle++ [34] is a

desktop search application that supports RDF path fragment queries and retrieves

annotated desktop resources. It uses Lucene [19] to index RDF triples and paths. The

system expects the user to have knowledge of the ontology. It takes path sequence

queries such as creator/affiliatedTo MIT to find all documents whose authors are

affiliated to MIT. [12] does not support searches on related words of ontological classes

or relationships, unlike our system that supports both.

Similar approaches have been proposed for supporting keyword searches over

relational and XML databases. However, these approaches often limit their search to the

set of literal values i.e. leaves or terminal nodes, e.g. the title of a book or an author’s

name. The applications retrieve data by repeated joining of the data or tuples associated

with the matched fields. [29] provides data and schema browsing through interactive

displays. XRank [15] allows searches on XML elements or tags. Our system provides

keyword searches on RDF documents and hence the challenges are different compared to

keyword searches on database or XML documents.

The closest work that is related to our work is Panto [4]. It provides an interface

that accepts general natural language queries and outputs SPARQL queries. They use the

StanfordParser [35], WordNet [20] and string metrics algorithms to make sense of words

in the natural language query and map them to entities (class, instance or relation) in the

ontology. Then they translate the semantics of the query into a SPARQL query. The

translation also supports features such as negation, comparative and superlative

modifications.

 10

Our work differs from Panto in the class of query handled. [4] translates the

natural language query into its corresponding SPARQL query. When a user searches

using SPARQL, he has the knowledge of the relationships that are involved between

entities he is searching for. For example, a query like “Who are the tennis players from

Moscow?” would translate into a SPARQL query as shown below:

Select ?player

Where {

?player placeOfBirth “Moscow”.

?player rdf:Type tennis_player.

}

In our system, we try to answer path queries, where the user is looking for the relations

that connect the entities in question. Consider the path:

Fatah – Revolutionary Council Infiltration Beirut Lebanon

Middle East

Given the path above, [4] can answer the following queries:

• Where did the Fatah council infiltration take place?

• What is the capital of Lebanon?

• What council infiltration took place in Beirut?

However, [4] cannot answer a query such as:

 11

• Which council infiltration took place in the middle east?

• How is Fatah Infiltration connected to Lebanon?

In the first query, we know the entities that are involved – Council Infiltration, Middle

East. [4] can only solve queries in which the entities are directly connected through the

specified relation. Hence, it will look for the triple that connects the two entities using the

relations “took place”. In the second query, the user has used the keyword connected to

represent all possible relations (paths) between the entities involved. Our system

identifies the entities that are involved in the query and determines all paths that include

those entities.

2.2 BACKGROUND

In this section, we provide an introduction to Tarjan’s algorithm [9] to solve the single

source path expression problem; Labeling scheme proposed by SPARQ2L [5]; Lucene

Search Engine; and WordNet English Lexicon. In our work, we propose an adaptation of

Tarjan’s algorithm in order to determine path expressions that include multiple sources.

Understanding the single source algorithm is very important to analyzing our algorithm.

Tarjan Algorithm

Given a directed graph G = (V, E) with a distinguished source vertex s, the single source

path expression problem is to find, for each vertex v a regular expression P(s, v) which

 12

represents the set of all paths in G from s to v. [9] describes a decomposition method for

computing these path expressions.

 The input to the SOLVE [9] algorithm is a path sequence (Pi, vi, wi), 1 ≤ i ≤ l such

that Pi is an unambiguous path expression of type (vi, wi). The notion of path sequence is

based on an ordered graph i.e. every node has a unique number. In [5], an approach for

labeling and indexing path sequences is described.

procedure SOLVE

begin

Initialize:

P(s, s) = Λ;

for each v∈V – {s}, P(s,v) = Ø

Loop:

for each path expression Pi do

 if vi = wi, then

P(s, vi) = P(s, vi)·Pi

 if vi ≠ wi then

P(s, wi) = [P(s, wi) U [P(s, vi)·Pi]]

end SOLVE

Figure 2: Single source all path algorithm

 13

Sparq2l Labeling & Indexing

SPARQ2L [5] uses a concise representation of paths (called P-Expressions) instead of an

enumerated listing. For example given the triples (x, P, y), (x, Q, y) and (y, R, z), the

summary of paths between x and z can be represented as (P U Q · R). The system uses a

binary encoding scheme to efficiently represent such regular expressions as opposed to a

string representation.

[5] has a hierarchical labeling scheme based on 3 identifiers:

Component Identifier: unique number assigned to individual strong component during a

depth first search on the graph.

Level Identifier: it is the depth of the strong component node in the optimal spanning tree.

Subgraph Identifier: identifies disconnected non-tree subgraphs and the dangling tree

subgraphs.

Given a path query with source s and destination d, the labeling scheme has the non-

reachability property that can be stated as follows:

• If s and d do not have the same subgraph identifier, then the query result is empty.

• If the level identifier of source is greater than that of the destination, the query

result is empty.

• Any node with a level identifier lesser than that of s and greater than that of d

cannot be a member of the result set.

 14

The result of the SOLVE [9] algorithm for a source s is an array of path summaries.

The array is indexed based on the node identifiers. For example, the array below

summarizes the paths for a given source node. An entry of Ø indicates that there is no

path between the source and that node. Otherwise, the P-Expression for the path is stored

as part of the array element.

Ø Q · R Ø Ø

Figure 3: Path Summarization

Lucene Search Index

Lucene [19] search engine is a Jakarta open source project used to build and search

indexes. It can index text documents and retrieve them based on various search criteria. It

provides a basic framework which can be used to build a full-featured search engine.

Lucene indexes using document objects. Thus, the text documents which are to be

indexed have to be converted to document objects. Each document object consists of a set

of field objects containing name and value pairs. The name is of type String and value

can either be a String or a Reader object. Field class in Lucene provides various methods

depending on whether the text in the value part of the field is tokenized, indexed or

stored. Depending on the requirements some of the text information is tokenized, indexed

or stored. A Lucene allows users to search on the values of these fields and this is done

using an IndexSearcher object. All query terms are parsed using an analyzer, which is

wrapped within the query object. Lucene provides four different analyzers to parse the

 15

search terms in the query: the StopAnalyzer, WhiteSpaceAnalyzer, SimpleAnalyzer, and

StandardAnalyzer. An analyzer takes in a stream of text and returns a set of tokens.

Lucene tokenizes the queries depending on the kind of analyzer. The StopAnalyzer is

used to split the terms and eliminate any stop words that exists in the query. The

WhiteSpaceAnalyzer splits the query terms based on white space. The SimpleAnalyzer

splits the text at non-character boundaries, such as special characters (‘@’,’&’ etc.). The

StandardAnalyzer is the most sophisticated parser with rules for email addresses,

acronyms, hostnames, floating point numbers, as well as the lowercasing and stop word

removal. Lucene provides two important classes to build and search on a index.

IndexWriter class is used to build the index and IndexSearcher class to search on the built

index. Lucene provides tools to generate query objects called Query Parser.

The QueryParser class takes the search terms or queries and wraps them in a

query object. This query object is later used by the search method in the IndexSearcher

class. Later, the IndexSearcher returns the Hits object for the query. This Hits object is

similar to a vector and contains the ranked list of document objects for a given query. For

our use, we have implemented a PorterStemAnalyzer by extending Lucene’s analyzer

class and have used it to stem the words to its base forms to eliminate any stop words.

WordNet

The WordNet [20] is an online lexical reference system developed at the Cognitive

Science Lab of Princeton University. Currently WordNet contains about 150000 words

organized into 115,000 synsets of nouns, verbs, adjectives and adverbs. Each synset or

set of words are related to other synsets by common relationships such as hypernym or

 16

hyponym, and meronym or holonym, verb groups i.e. groups of related verb forms,

synonyms or similar meaning words, derivational forms or morphological forms etc.

There exist different groups of synonymous words that are grouped based on the sense of

a particular word. For example, the word faculty has two synsets since it has different

senses based on the usage context. WordNet can retrieve the different sets of related word

information depending on the POS (Part of Speech) of the word. For example, the word

teaches has related word forms such as verb groups, synonyms, derivational forms, and

hyponyms. The derivational form of a word is given by adding the morphological

suffixes. For example, derivational form of a word write is writing.

 17

Chapter 3

SYSTEM ARCHITECTURE

.

The System has two execution phases: Pre-processing phase and the Query processing

phase. During the pre-processing phase, the system builds indices that are later used

while processing the keyword search query. Building indices offline predominantly helps

in reducing the execution time of the query. Figure 5 shows the system architecture

diagram. Before the user enters the query, the ontology is loaded and the system builds

the necessary indices. We identify two kinds of indices that need to be built during the

pre-processing phase: (1) Text search index for the ontological triples, (2) Labeling and

indexing of graph’s path sequence. We use Sparq2l system to build the path sequence

indices as described in section 2.2. As described earlier, the query to a keyword search

consists of a list of n keywords and the answer to the query is the set of paths in G where

the end point of each path is a node v∈V that matched a user keyword based on one of

the following criteria:

• There exists some keyword k ∈(k1, k2… kn) that matches label of node v either

lexically or on semantic query expansion.

• Node v is the subject/object of the ontological triple whose predicate label

matches some keyword lexically or on semantic query expansion

In order to achieve this, we first require an ontology text search index that can match user

keywords to entity labels in the ontology.

 18

3.1 TRIPLE SEARCH INDEX

In order to facilitate fast matching of user search terms to ontological entities, we build a

search index for triples in the ontology. Consider the triple: <Thomas Cormen, author,

Introduction to Algorithms>. The system creates an index for every triple in the dataset

using its subject, predicate and object values in the least. Thus a search keyword author

will retrieve the above triple based on its match of the predicate index.

Figure 4: System Architecture

However, more often the labels in the ontology require lexical and semantic processing

before creating the index. For example, it is very common to label relationships using

compound words. The relationship author is more commonly represented using

 19

compound words author_of or has_author. In such cases, it is necessary to tokenize the

label and remove commonly occurring stop words.

Another common issue in information retrieval is vocabulary mismatch. For

example, the user might have entered the keyword writer while the ontology has the term

author. The main reason for such mismatches is the restricted vocabularies of knowledge

bases. Traditional search engines do query expansion to overcome this problem. Query

expansion is the technique of adding related terms to the original query to improve upon

the problems of word mismatches. We use WordNet [20], a large lexical database of

English, to expand the ontological term with its synonyms. Hence, while indexing author,

its synonym writer is also indexed.

As part of the term expansion procedure, the system also indexes all derivational

forms of a word. We use the porter stemming algorithm [16] to determine the root stem

word for then determine derivational words by adding noun/verb suffixes to it. Hence, the

ontological label writer will also be indexed using its derivations write, writer and

writings.

Thus for every triple, we create an index using the following fields:

• Subject label & URI

• Predicate label & URI

• Object label, URI or value (in case of literal)

• Synonym

• Derived Words

 20

We use Apache’s Lucene to build the ontology triple index. As described earlier, the

lucene index is made up of document objects and each document object consists of

multiple design-specified fields. A field represents the value against which the index is

queried. An example of fields for a document could be author, language, topic, data

modified etc. A search of type author:Thomas Cormen will retrieve all documents

authored by Thomas Cormen. In the case of ontology triples, each triple constitutes a

document object and we define the following fields: subject label, predicate label, object

label, subject URI, predicate URI, object URI/value (literal), synonyms & derived words.

The search index is extensible in that if the triple needs to identified by additional

properties (say class names), adding the new property as a document field would suffice

the requirement without needing further changes to existing document structure.

Lucene provides four types of field objects that determine how the field values are

indexed and stored. They are:

• Field.Keyword - The data is stored and indexed but not tokenized. This is most

useful for data that should be stored unchanged such as a date.

• Field.Text - The data is stored, indexed, and tokenized. Field.Text fields should

not be used for large amounts of data such as the article itself because the index

will get very large since it will contain a full copy of the article plus the tokenized

version. For the triple index, this field can be used to index the subject, predicate

and object labels.

• Field.UnStored - The data is not stored but it is indexed and tokenized. Large

amounts of data such as the text of the article should be placed in the index

 21

unstored. Fields involving synonyms and derivational words of the ontological

entities need not be stored as they do not need to be retrieved.

• Field.UnIndexed - The data is stored but not indexed or tokenized. This is used

with data that you want returned with the results of a search but you won't

actually be searching on this data. In our application, since we do not allow

searching for the URI, there is no reason to index it but we want it returned to us

when a search result is found.

 If the user’s keyword matches any of these keys, the corresponding triple is retrieved.

The use of synonyms and derived words as search indices provides for semantic query

expansion during the online query processing phase.

3.2 QUERY PROCESSING

As described earlier in the problem definition, the answer to the path query is a set of

paths between nodes in the graph where the end points matched the user’s keywords.

Query processing consists of taking all the matched nodes as input and computing paths

that connect them. [9] describes a method to solve the single source path expression

problem, i.e. given a source node s, compute all paths between s and nodes in the graph.

In our case, we have multiple matched nodes, each of which could potentially be the

source of a path. We describe our MULTISOLVE algorithm later in the section.

Consider the keyword search query Amit Sheth Writings Semantic web. We use

the two criteria mentioned in the problem definition to determine the nodes to include in

the resultant path set. The first criterion includes all nodes (instances) whose labels

 22

directly matched the keyword either lexically or through semantic query expansion. In

the example above, this would match entities Amit Sheth and Semantic Web and retrieve

the triples that contain the matched entities as subjects or objects. In the case that a

relationship label (AuthorOf) matches a keyword (Writings), we include all nodes that are

associated with the relation. In order to filter out irrelevant nodes, we only consider

already matched entities that have the matched property/relation. Hence, we would only

include nodes that are objects of the triple (Amit Sheth, AuthorOf, ?o). Here, we say that

the keyword has matched an ontology entity through semantic query expansion. While

creating the index, the system handles the relationship label AuthorOf in the following

manner. The final list of words used for indexing the relation AuthorOf contains the word

Writings.

• Tokenize label and remove stop words {Author}

• Find synonyms of the word using WordNet {Author, Writer}

• Using porter stemming algorithm, determine the stem of each of the words in the

list {Author, Write}

• Find derivatives from the stemmed word by adding noun/verb suffixes {Author,

Writer, Writing, Writes, Writings}

The system determines subject/object matches first and only then handles matches at the

predicate level. The main reason to do this is to easily filter out unwanted nodes before

computing the paths.

 At the end of the matching procedure using Lucene search index, we would have

a list of nodes that are to be included in the resultant set of paths. The next step is to

 23

determine the nodes that form the end points of the paths. In order to be able to use the

underlying SPARQ2L system for path computation, the labels, as represented in sparq2l,

of the matched nodes have to be determined. The multisolve algorithm iterates through

this set and computes all the paths involving them. Applying the non-reachability

property of the sparq2l labeling scheme, we can determine the order in which the set has

to be iterated. We propose that sorting the nodes in increasing order of their IDs will

result in the complete set of all paths between the matched nodes. As discussed in section

2, each node ID in sparq2l consists of 3 identifiers: strong component, subgraph & level

identifier. The comparator between two nodes with IDs {scc1, sub1, lev1} and {scc2,

sub2, lev2} is as follows:

• If scc1 is not equal to scc2 then the node with smaller scc ID is smaller. Else goto

next step.

• If sub1 is not equal to sub2 then the node with smaller sub ID is smaller. Else goto

next step.

• Node with smaller level ID is smaller.

Figure 6 presents the multi source path expression algorithm. We discuss the experiment

and evaluation in the next section.

 24

procedure MULTISOLVE

begin

Initialize:

 M: Set of nodes matched using lucene search index

 S: Set of nodes already solved in the algorithm

 For each node s∈M DO

P(s, s) = Λ;

for each v∈V – {s}, P(s,v) = Ø

 End For

Loop:

 Do until all nodes in M are marked

Mark smallest node s ∈{M}–{S} and add to S

SOLVE(s)

For each node a ∈{M}–{S}, Do

 if a ∈path(s)

Mark a and add a to S

Add path(s) to result

End Do

end MULTISOLVE

Figure 5: Multi Source Path Expression Algorithm

 25

Chapter 4

EVALUATION

4.1 EXPERIMENT SETUP

Implementation We have implemented our algorithm using Java 1.5 on a dual 1.8GHz

AMD Opteron machine with 15GB RAM and running Linux 2.4. The version of Sparq2l

used for path computation uses: Berkeley DB Java edition for storage and indexing; Colt

library [18] to perform all matrix implementations. We used Brahms and SemDis API to

parse the ontology and create a graph model which we used in creating triple indices and

building indices for path expressions. To build the triple index, we use Apache Lucene

[19] which is a high performance search engine library written in Java. To perform

semantic term expansion, we use WordNet [20] which is a publicly available lexical

database in English. The system is made web-based using the Apache Tomcat Java

servlet container.

Datasets We used two datasets in our performance evaluation. The Insider Threat [21]

dataset was developed at the LSDIS lab as part of the Insider Threat initiative at

Advanced Research Development Activity (ARDA). The second is a real-world dataset

that is populated using information on US political news. Tables 1 & 2 below show the

properties of the datasets.

 26

Table 1 'Insider Threat' dataset general statistics

INSTANCE LEVEL

Instances: 26442
Literals : 66047
Instance statements [instance - property - instance] : 34534
Literal statements [instance - property - literal] : 151313

SCHEMA LEVEL

Schema classes : 57
Schema class literals : 105
Schema properties : 75
Schema property literals : 45
Schema class statements [class - property - class] : 1
Schema class literal statements [class - property - literal] : 105

Table 2 'US Politics' dataset general statistics

General dataset statistics.

INSTANCE LEVEL

Instances: 471
Literals : 950
Instance statements [instance - property - instance] : 797
Literal statements [instance - property - literal] : 2345

SCHEMA LEVEL

Schema classes : 31
Schema class literals : 55

Schema properties : 32
Schema property literals : 21
Schema class statements [class - property - class] : 1
Schema class literal statements [class - property - literal] : 55

 27

Table 3 Query Execution Times for Insider Threat dataset

Query String
Time

(seconds) Num. Paths Max. Path Length Num. Nodes

Council Infiltration , Middle East 6.57 3 3 2

abdul paktin, 2001 hijacking 6.58 2 3 2

oil training, middle east 6.58 3 2 2

REVU , robert fisher 9.44 2 2 2

janet wallace , unisys 9.48 1 1 3

james lawson ,stryker 9.54 1 1 3

Leader of , Philippines 10.42 2 2 3

norman phillips , lyondell 12.07 3 2 3

robert fisher, gap 14.66 3 3 4

al islamia , afghanistan 15.54 13 4 5

abdul paktin ,saddam hussein 17.17 3 4 8
International fund ,connected
with ,saddam hussein 19.93 5 3 9

deborah pryce, ohio 21.53 1 1 8

barakaat , bank of england 62.45 39 4 23

Table 4 Query Execution Times for US Politics dataset

Query String
Time

(Seconds) Num. Paths Max. Path Length
Num.
Nodes

Arnold, registers, lawsuit 1.25 1 1 2

Mark Sanford, South Carolina 1.26 1 1 2

craig thomas, florida 1.27 5 7 3

obama, 2000 election 1.28 4 6 3

craig thomas, republican party 1.28 10 7 3

craig thomas, laura bush 1.29 5 6 3

christopher bond, patriot act 1.29 7 6 4

arnold, jeb bush 1.29 8 8 2

craig thomas, governors association 1.33 5 7 3

john mccain , oxley act 1.33 2 2 3

Larry Craig, veto, Governor Quinn 1.37 2 2 3

signed, patriot act 1.65 2 3 3

craig thomas, 2004 republican convention 1.67 8 7 3

obama , joseph biden 1.74 2 1 4

james talent, republican convention 2.61 17 7 7

We evaluate the performance of the multisolve algorithm by running path queries and

measuring the query running time. For this experiment we randomly selected 20 different

keyword queries for each dataset such that there exists at least one path between nodes in

the query. Hence, we do not evaluate queries that do not result in any paths. Tables 3 & 4

 28

show the result of our experiments on the Insider Threat and the US Politics datasets

respectively.

 The query execution time is in the order of seconds for the datasets chosen. We

analyze the complexity of the algorithms involved and try to determine the factors

affecting the running time of the query processing phase. The query processing phase

consists of the following steps:

• Text search over the ontology to determine the nodes involved

• Sort the matched nodes in the order of increasing node IDs

• Compute paths that include the matched nodes

We build the search index for ontology using the Lucene search engine. It offers almost

constant time lookup of documents in the order of milliseconds. We obtain average

lookup times of 96ms for the US Politics dataset and 145ms for the Insider threat dataset.

The runtime for the second step of sorting the matched nodes depends on the number of

matched nodes. In our experiments, the most number of nodes that were to be sorted did

not exceed 23. Hence, the algorithm chosen is not crucial for this step. We used the

TreeSet data structure to sort the nodes based on their node IDs. The TreeSet comparator

guarantees that the nodes are sorted at the time of insertion itself with a time complexity

that is logarithmic on the number of nodes in the set.

 Hence, we can deduce that the most time is spent in step 3 of the query processing

phase. The multisolve algorithm iterates through the sequence of matched nodes and

computes path expressions that include all of these nodes.

 29

0

10

20

30

40

50

60

70

0 5 10 15 20 25

Number of Nodes

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

in
 s

e
c
o

n
d

s
)

Figure 6 Insider Threat Dataset: Query Processing Time versus Number of Solved Nodes

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8

Number of Nodes

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

in
 s

e
c
o

n
d

s
)

Figure 7 US Politics Dataset: Query Processing Times versus Number of Solved Nodes

 30

 The worst case scenario, in terms of runtime of the multisolve algorithm, is when

all the matched nodes have to be solved using the Tarjan’s single source path expression

algorithm [9]. Suppose that the number of matched nodes is n and the number of path

sequences in the graph (computed offline) is m, then the multisolve algorithm would scan

the path sequence n times. Thus, the time complexity would be in the order of O(n.m).

The value of m is dependent on the number of strongly connected components in the

graph.

 For a single source, the algorithm iterates through the entire path sequence and

appropriately combines path expressions. Since we compute partial path expressions

offline during the pre-processing phase, runtime is only affected by the method to

combine partial path expressions. The underlying implementation in Sparq2l performs

this operation in near constant time. This also implies that length of the path and number

of paths does not affect the overall algorithm. Hence, the main factor that affects the

runtime is the number of nodes that are considered as source nodes for computing path

expressions. Figures 7 & 8 show the graph of query processing times against the number

of matched nodes. It can be noted that the execution time increases with the number of

nodes involved. However, in Figure 6 we note an anomaly. The runtime with 8 nodes is

higher than with 9 nodes. For both of the queries, the number of path sequences read was

the same. As mentioned earlier, SPARQ2L uses BerkeleyDB persistent storage to store

the path sequences for a given graph. It is our educated guess that path sequences get

cached during accesses to the database. Hence, the I/O access times could be smaller for

a query with more number of nodes. This guess is to be validated and hence an issue to

investigate in future work.

 31

 The length of the path sequence for a graph is directly proportional to the number

of nodes in the graph. The query processing time directly depends on the length of the

path sequence as the algorithm iterates through the entire path sequence for each source

node. Figure 9 below shows the comparison between the query execution times of the

two datasets used. The Insider Threat dataset has more number of nodes than the US

Politics dataset and hence it takes longer to process queries, with same number of source

nodes, over Insider Threat dataset.

Query Processing on Different Datasets

0

5

10

15

20

25

0 2 4 6 8 10

Number of Nodes

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

in
 s

e
c
o

n
d

s
)

Insider Threat

US Politics

Figure 8 Comparing Query Execution Times over Different Datasets

Table 5 Query Execution Time over Different Dataset

Num. Nodes

US Politics -
Query Execution

Time (T1
seconds)

Insider Threat -
Query Execution

Time (T2
seconds) Scale = T2 / T1

2 1.29 9.44 7.317829457

3 1.67 12.07 7.22754491

4 1.74 14.66 8.425287356

 32

Table 5 shows the scaling of query execution times over the two datasets. The size of

path sequence of the Insider Threat dataset is 26411 and that of US Politics dataset is 470

giving a size scaling of 56.2.

4.2 ALGORITHM CORRECTNESS

In section 2, we briefly described Tarjan’s algorithm [9] to solve the single source path

expression problem that given a source node and a path sequence will compute all paths

between the source and any node v in the graph. [9] presents the algorithm and also

discusses the proof of its correctness. [9] makes use of the single-scan-path-preserving

property of path sequences and thus computes the path expression in a single scan of all

the partial path expressions. In our scenario, we have multiple sources and the problem is

to determine paths that include all these source nodes. Our main adaptation to [9] is in

determining the order in which the source nodes are selected to compute the paths. We

propose that selecting the nodes in the increasing order of their node IDs, determined

based on the hierarchical labeling scheme; will ensure that no paths are missed.

 The non-reachability property of the Sparq2l labeling scheme states that given

two nodes s and d, there cannot be a path from s to d if any of the following is true:

• If s and d are not in the same subgraph

• If the level identifier of s is greater than that of d.

Thus, given a set S = {s1, s2 … sn} of nodes, ordering them incrementally based on their

node IDs would ensure that for any i and j such that nodeID(si) is less than nodeID(sj),

 33

the paths (if one exists) between si and sj would be taken into consideration while

computing the path expression. The single scan algorithm will solve si and correctly

aggregate all the paths between si and nodes that appear later in the scan. Conversely, if

node si is solved later than sj, then the paths between si and sj will not be considered in the

result.

 34

Chapter 6

CONCLUSION & FUTURE WORK

This thesis presents a prototype system that allows keyword search for path queries on

ontology. The contributions of this work are as follows:

• We present a full-text search index for ontology triples that provides matching

capabilities based on semantic and morphological expansion of terms used for

indexing the triple.

• Given a set of text matches, we propose a method to construct the set of answer

paths using the algorithm to solve the multi-source path expression problem.

The paths retrieved by the system are not ordered. Hence, it could potentially lead to

information overload. Semantic association ranking metrics such as those suggested in

[22, 23] could be used to present only paths most relevant to user’s context.

DBpedia, Yago are recent efforts to generate semantic metadata by extracting

structured information form the web (Wikipedia). A keyword or natural language search

interface to such knowledge bases would prove immensely useful as the end user need

not be aware of the structure of the information. While this work is limited to handling

keywords, it will be worthwhile to build a search interface that accepts queries in natural

language.

 35

REFERENCES

[1] Resource Description Framework: W3C Semantic Web Activity. RDF Core Working

Group. http://www.w3.org/RDF/

[2] Christian Bizer, Soren Auer, Georgi Kobilarov, Jens Lehmann, Richard Cyginiak.

DBpedia - Querying Wikipedia like a Database. WWW 2007.

[3] Fabian M. Suchanek, Gjergji Kasneci, Gerhard Weikum: Yago: A Core of Semantic

Knowledge - Unifying WordNet and Wikipedia. WWW 2007.

[4] Chong Wang, Miao Xiong, Qi Zhou and Yong Yu. PANTO: A Portable Natural

Language Interface to Ontologies. ESWC 2007.

 [5] Kemafor Anyanwu, Angela Maduko, Amit Sheth. SPARQ2L: Towards Support For

Subgraph Extraction Queries in RDF Databases. WWW 2007.

[6] RDFPath. http://infomesh.net/2003/rdfpath

[7] Alkhateeb, Jean-François Baget, Jérôme Euzenat, RDF with regular expressions,

Research report 6191, INRIA Rhône-Alpes, Grenoble (FR), 32p., May 2007.

[8] He, H., Wang, H., Yang, J., and Yu, P. S. 2007. BLINKS: ranked keyword searches

on graphs. In Proceedings of the 2007 ACM SIGMOD international Conference on

Management of Data. SIGMOD 2007.

[9] Tarjan, R. E. “Fast Algorithms for Solving Path Problems”. JACM, Vol. 28, No. 3,

July 1981, pp. 594-614

 36

[10] Adams, T., Gearon, P., Wood, D., Kowari. A Platform for Semantic Web Storage

and Analysis. XTech 2005.

[11] Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Yun Peng, Pavan

Reddivari, Vishal C Doshi, and Joel Sachs. Swoogle: A Search and Metadata Engine for

the Semantic Web. Proceedings of the Thirteenth ACM Conference on Information and

Knowledge Management, 2004.

[12] J. Davies, U. Krohn, and R. Weeks: QuizRDF: search technology for thesemantic

web. In WWW2002 workshop on RDF & Semantic Web Applications,11th International

WWW Conference WWW2002, Hawaii, USA, 2002.

[13] Yunyao Li, Huahai Yang, H. V. Jagadish. NaLIX: an Interactive Natural Language

Interface for Querying XML. SIGMOD, 2005.

 [14] Krys J. Kochut and Maciej Janik. SPARQLeR: Extended Sparql for Semantic

Association Discovery. ESWC, 2007.

[15] Lin Guo Feng Shao Chavdar Botev Jayavel Shanmugasundaram. XRANK: Ranked

Keyword Search over XML Documents. ACM SIGMOD, 2003.

[16] M.F. Porter, 1980, An algorithm for suffix stripping, Program, 14(3) pp 130−137.

[17] Maciej Janik, Krys Kochut. "BRAHMS: A WorkBench RDF Store And High

Performance Memory System for Semantic Association Discovery", Fourth International

Semantic Web Conference ISWC 2005.

[18] Colt Library for High Performance Scientific and Technical Computing in Java.

http://dsd.lbl.gov/~hoschek/colt/

[19] Apache Lucene. http://lucene.apache.org/

[20] WordNet: An Electronic Lexical Database. http://wordnet.princeton.edu

 37

[21] Boanerges Aleman-Meza, Phillip Burns, Matthew Eavenson, Devanand

Palaniswami, Amit P. Sheth: An Ontological Approach to the Document Access Problem

of Insider Threat. ISI 2005.

[22] Kemafor Anyanwu, Angela Maduko, and Amit Sheth. Semrank: ranking complex

relationship search results on the semantic web. WWW 2005.

[23] Boanerges Aleman-Meza, Christian Halaschek-Wiener, Ismailcem Budak Arpinar,

Amit P. Sheth: Context-Aware Semantic Association Ranking. SWDB 2003.

[24] Sören Auer, Jens Lehmann: What have Innsbruck and Leipzig in common?

Extracting Semantics from Wiki Content. ESWC 2007.

[25] SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/

[26] Surajit Chaudhuri, Raghu Ramakrishnan, Gerhard Weikum: Integrating DB and IR

Technologies: What is the Sound of One Hand Clapping? CIDR 2005.

[27] Holger Bast, Ingmar Weber. The CompleteSearch Engine: Interactive, Efficient, and

Towards IR& DB Integration. CIDR 2007.

[28] Andreas Harth, Stefan Decker. "Optimized Index Structures for Querying RDF from

the Web". 3rd Latin American Web Congress, Buenos Aires – Argentina.

[29] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, S.

Sudarshan. Keyword Searching and Browsing in Databases using BANKS. ICDE 2002.

[30] Vagelis Hristidis University of California, San Diego. DISCOVER: Keyword Search

in Relational Databases. VLDB 2002.

[31] Vagelis Hristidis, Yannis Papakonstantinou, Andrey Balmin. Keyword Proximity

Search on XML Graphs. ICDE 2003.

[32] XQuery: An XML Query Language. www.w3.org/TR/xquery

 38

[33] McBride, B. Jena: Implementing the RDF Model and Syntax Specification. Proc. of

2nd International Workshop on the Semantic Web, May 2001.

[34] T. Iofciu, C. Kohlsch¨utter, W. Nejdl, and R. Paiu. Keywords and RDF fragments.

Integrating metadata and full-text search in beagle++. In Proc. of the Semantic Desktop

Workshop held at the 4th International Semantic Web Conference, 2005.

[35] Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: ACL. (2003) 423-430

[36] Semantic Web. W3C Semantic Web Activity. http://www.w3.org/2001/sw/

[37] Wikipedia. http://www.wikipedia.org

[38] RDFPath. http://logicerror.com/RDFPath

[39] PSPARQL Query Language. http://psparql.inrialpes.fr/

[40] RDQL - A Query Language for RDF. http://www.w3.org/Submission/RDQL/

[41] DBPedia SPARQL Endpoint. http://dbpedia.org/sparql

 39

Appendix A

SCREENSHOTS OF THE SEARCH INTERFACE

Figure 9 Query: "Council Infiltration, Middle East"

 40

Figure 10 Query: "Leader of, Philippines"

 41

Figure 11 Query: "International fund, connected with, saddam hussein"

 42

Figure 12 Query: "Mark Sanford, South Carolina"

 43

Figure 13 Query: "Larry Craig, veto, Governor Quinn"

 44

Figure 14 Query: "Arnold, registers, lawsuit"

