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ABSTRACT 

Today’s semantic web has a growing wealth of machine understandable metadata 

represented using markup languages like RDF, XML or OWL. There exists a plethora of query 

languages that aid is searching such data models. However, most real world searches involve 

queries expressed in natural language as it allows the user to get information without using 

complex formal query languages. This paper presents a search interface for path queries on 

ontologies, which accepts keywords and finds answers where each answer is a subgraph 

containing paths between nodes that match the keywords. Our approach for building such a 

system comprises of (1) a full-text search index for triples in the ontology (2) lexical and 

semantic query expansion to match user keywords to entities in the ontology, and (3) an 

algorithm which uses the Sparq2l path sequence indices to compute the answer subgraphs. 
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Chapter 1 

INTRODUCTION 

 

Semantic Web (SW) [36] is as an extension to the current web where the content is 

machine understandable thus facilitating easy information integration. The Resource 

Description Framework (RDF) [1] is the core of W3C's SW language and technologies 

based on RDF provide the primary capabilities for building most SW applications. The 

current web has a growing availability of semantic metadata created from large 

repositories of information. Recent notable efforts like DBpedia [2] and Yago [3] extract 

structural information from Wikipedia [37], a large and popular community created 

encyclopedia, and use RDF to represent the information. In RDF, each resource has a 

unique identifier called the URI and statements are made using the resource URIs. RDF 

based technologies; especially an RDF query language can provide users to express 

complex queries against these repositories. An example of a complex query as given in 

[24] tries to “find soccer players with number 11 on their jersey, who play in a club 

whose stadium has a capacity of more than 40000 people and were born in a country with 

more than 10 million inhabitants”. Such queries cannot be asked against Web-based data 

using traditional search engines. It is the representation of Web-based data in richer RDF 

form, and the expressiveness of RDF query languages which enables such a querying 

capability. 
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Several languages have been proposed for querying RDF. For example, the 

SPARQL query language [25] which just recently became a recommendation of the 

World Wide Web Consortium (W3C) is based on triple matching. However most real 

world searches, as done by common users, involve queries represented in natural 

language as this allows users to easily express their information needs without the 

knowledge of complex query languages, the underlying schema and the domain 

vocabulary. For example, for the query “Who is the author of “Introduction to 

Algorithms”?” the user needs schematic information on the relationship between the 

concepts book and author in order to construct the correct formal query. Hence, the main 

challenge towards providing user-friendly search on ontology is to provide an interface 

that accepts keywords and maps it to some internal graph representation of class, instance 

or relationship in the ontology. The mapped sub-graph is then used for processing the 

query. We propose a minimized NLP extension to full-text search indexing of the 

ontology to accomplish the goal of mapping user keywords to ontological entities. The 

triples are processed to include synonyms, derived words (stemming) & tokenized 

compound words (example: authorOf) in the search index. 

There is an interesting class of query that is common especially in investigative 

applications where the user is interested in determining paths of associations between 

seemingly unrelated entities in the knowledgebase. While most languages support 

pattern-matching queries, there are few, like [5, 6, and 39] that provide support for such 

path queries. In the above mentioned languages, the searches are made using the node 

URI and the user has to adhere to a specified syntax for expressing the query.  In this 

work, we propose a system that allows users to express path query search terms using 
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keywords. The answer to the keywords search is a set of subgraphs from the dataset 

where each subgraph includes paths involving entities that matched the keywords. A 

formal definition of the problem statement is presented in the following section.  

 

1.1 MOTIVATION 
 

Consider the scenario where the user is researching on the American Civil War. Suppose 

that he is looking for an association between the American Civil War and writings of the 

Greek historian Thucydides. The simple text search provided by Wikipedia using the 

keywords “American Civil War” “Thucydides” retrieves articles that have relevance 

scores not greater than 8.3%. As is common with such queries, the association might 

involve multiple entities which may be spread across the information web.  Traditional 

search indices do not capture such link information. 
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Figure 1: Motivating Scenario 
 

This means that the user still has to sift through the result pages and traverse internal 

links to determine the association. Representation of facts from Wikipedia in RDF allows 

complex queries that make use of the structure of information to be constructed. DBpedia 

provides a SPARQL endpoint [41] where users can enter formal queries to search against 

structured information extracted from Wikipedia. Similarly, Panto takes in a natural 

language query and transforms it into an ontology query pattern. SPARQL based 

interfaces can only provide answer to pattern matching queries where the user has the 

knowledge of the relationships that connect the entities in the query. When the user does 

not know the relations involved in the association, the query belongs to the class of Path 

queries. Systems such as Panto cannot answer such queries. 
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1.2 PROBLEM DEFINITION 

 

Formally, the problem we are trying to solve may be defined as follows: 

Similar to [8], given a directed graph G = (V, E) where each node v∈V and edge e∈E has 

a label (URI) associated with it, we are concerned with querying this graph using 

keywords. A keyword search query q consists of a list of n keywords (k1, k2… kn). The 

answer to query q is the set of paths in G where the end point of each path is a node v∈V 

that matched a user keyword based on one of the following criteria: 

• There exists some keyword k ∈(k1, k2… kn) that matches label of node v either 

lexically or on semantic query expansion. For example, the keyword “democratic 

convention” lexically matches the entity “democratic national convention”. The 

keyword “national assembly” matches “national convention” through semantic 

query expansion of assembly into convention. 

• Node v is the subject/object of the ontological triple whose predicate label 

matches some keyword lexically or on semantic query expansion. For example, 

the keyword “author” lexically matches the relationship “authorOf”. The keyword 

“writer” matches the relationship “authorOf” through query expansion. In both 

cases, the node v that is the node associated through the predicate “authorOf”. 

 

1.3 CONTRIBUTIONS 

 

The contributions of this work are given below: 
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• We present a full-text search index for ontology triples that provides matching 

capabilities based on semantic and morphological expansion of terms used for 

indexing the triple. 

• Given a set of nodes based on text matches, we propose a method to construct the 

set of answer paths using the algorithm to solve the multi-source path expression 

problem. 

The rest of the thesis is organized as follows. We survey related work and background 

information in Chapter 2. In Chapter 3, we introduce our system architecture and discuss 

the algorithm to solve the multi-source path expression problem. We discuss system 

evaluation in Chapter 4. Experiments over two datasets indicate that the query execution 

time is directly proportional to the number of entities involved in the query. Also, we 

note that the query execution time increases with the size of the dataset. Finally, we 

discuss future work and conclude in Chapter 5.  
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Chapter 2 

RELATED WORK & BACKGROUND 

 

2.1 RELATED WORK 

 

Information search is one of the most popular applications with significant room for 

improvement. The availability of large amounts of structured, machine understandable 

information on the semantic web offers opportunities for improving traditional search. 

The Resource Description Framework (RDF) [1] is a powerful data model that it the core 

of W3C's Semantic Web architectural layers. It is a standard that provides the features for 

interoperability of data & machine understandable semantics for metadata. There exist 

several RDF query languages including RQL, RDQL [40], SeRQL, TRIPLE and 

SPARQL. However most real world searches, as done by common users, involve queries 

represented in natural language, such as English, that they are familiar with. This allows 

for users to express their information needs without the knowledge of the underlying 

schema or vocabulary of the ontologies. 

 The problem of natural language interfaces to knowledge bases has been 

extensively studied for years. [30, 29, 31] allow for keyword search over relational 

databases. [15, 13] provide a natural language interface to search over XML. [13] uses 

the tree structure of XML in translating the search keywords into XQuery [32] 

expressions. In this work, we present a keyword search interface over RDF ontology. 
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Such ontologies are directed acyclic graphs and hence the techniques used for XML 

cannot be applied.  

Systems like [10, 33] are based on formal querying languages, a few allow the 

querying of Semantic Web repositories using keyword queries or rdf path fragments. Our 

system is different from the above systems, as it supports keyword search not only on 

literals, but also on related words of instances and relationships. The systems allow users 

to enter only a single keyword or literal per search, unlike our system which allows 

multiple keywords in a single search. The key feature of our system is that it supports 

searches on related words of instances and relations, unlike the direct or pattern based 

keyword searches. Additionally, our system displays search results in the form of paths.  

Kowari [10] is a native RDF store that stores information using a RDF database. 

It allows users to query using iTQL RDF query language, which is similar to SQL. 

Sesame is a RDF database with support for RDF Schema inference and querying. It 

supports several query languages including SeRQL. Jena provides persistent storage of 

RDF using relational database. It provides SPARQL query language support for 

accessing parts of RDF/RDF or OWL and inference capabilities through SPARQL’s 

inference engine. Swoogle [11] is a search and retrieval system for searching ontologies 

on the web. [11] uses a ranking scheme that utilizes relationship weights between 

Semantic Web Documents (SWD) to model the probability of being explored. Swoogle 

allows keyword searches on classes, literals or properties. The system uses a spread 

activation algorithm to find related instances or literals for a given set of concepts using a 

initial set of relationship weights.  
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QuizRDF [12] is another search engine that allows keyword searches on 

annotated documents. The searches in QuizRDF are limited to literals. Beagle++ [34] is a 

desktop search application that supports RDF path fragment queries and retrieves 

annotated desktop resources. It uses Lucene [19] to index RDF triples and paths. The 

system expects the user to have knowledge of the ontology. It takes path sequence 

queries such as creator/affiliatedTo MIT to find all documents whose authors are 

affiliated to MIT. [12] does not support searches on related words of ontological classes 

or relationships, unlike our system that supports both.  

Similar approaches have been proposed for supporting keyword searches over 

relational and XML databases. However, these approaches often limit their search to the 

set of literal values i.e. leaves or terminal nodes, e.g. the title of a book or an author’s 

name. The applications retrieve data by repeated joining of the data or tuples associated 

with the matched fields. [29] provides data and schema browsing through interactive 

displays. XRank [15] allows searches on XML elements or tags. Our system provides 

keyword searches on RDF documents and hence the challenges are different compared to 

keyword searches on database or XML documents. 

The closest work that is related to our work is Panto [4]. It provides an interface 

that accepts general natural language queries and outputs SPARQL queries. They use the 

StanfordParser [35], WordNet [20] and string metrics algorithms to make sense of words 

in the natural language query and map them to entities (class, instance or relation) in the 

ontology. Then they translate the semantics of the query into a SPARQL query. The 

translation also supports features such as negation, comparative and superlative 

modifications. 
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Our work differs from Panto in the class of query handled. [4] translates the 

natural language query into its corresponding SPARQL query. When a user searches 

using SPARQL, he has the knowledge of the relationships that are involved between 

entities he is searching for. For example, a query like “Who are the tennis players from 

Moscow?” would translate into a SPARQL query as shown below: 

Select ?player 

Where { 

?player  placeOfBirth “Moscow”. 

?player  rdf:Type tennis_player. 

} 

 

In our system, we try to answer path queries, where the user is looking for the relations 

that connect the entities in question. Consider the path: 

Fatah – Revolutionary Council Infiltration   Beirut Lebanon  

 

Middle East 

Given the path above, [4] can answer the following queries: 

• Where did the Fatah council infiltration take place? 

• What is the capital of Lebanon? 

• What council infiltration took place in Beirut? 

However, [4] cannot answer a query such as: 
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• Which council infiltration took place in the middle east? 

• How is Fatah Infiltration connected to Lebanon? 

In the first query, we know the entities that are involved – Council Infiltration, Middle 

East. [4] can only solve queries in which the entities are directly connected through the 

specified relation. Hence, it will look for the triple that connects the two entities using the 

relations “took place”. In the second query, the user has used the keyword connected to 

represent all possible relations (paths) between the entities involved. Our system 

identifies the entities that are involved in the query and determines all paths that include 

those entities. 

 

2.2 BACKGROUND 

 

In this section, we provide an introduction to Tarjan’s algorithm [9] to solve the single 

source path expression problem; Labeling scheme proposed by SPARQ2L [5]; Lucene 

Search Engine; and WordNet English Lexicon. In our work, we propose an adaptation of 

Tarjan’s algorithm in order to determine path expressions that include multiple sources. 

Understanding the single source algorithm is very important to analyzing our algorithm. 

 

Tarjan Algorithm 

 

Given a directed graph G = (V, E) with a distinguished source vertex s, the single source 

path expression problem is to find, for each vertex v a regular expression P(s, v) which 
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represents the set of all paths in G from s to v. [9] describes a decomposition method for 

computing these path expressions. 

 The input to the SOLVE [9] algorithm is a path sequence (Pi, vi, wi), 1 ≤ i ≤ l such 

that Pi is an unambiguous path expression of type (vi, wi). The notion of path sequence is 

based on an ordered graph i.e. every node has a unique number. In [5], an approach for 

labeling and indexing path sequences is described. 

 

procedure SOLVE 

begin 

Initialize:  

P(s, s) = Λ; 

for each v∈V – {s}, P(s,v) = Ø 

Loop: 

for each path expression Pi do 

            if vi = wi, then   

P(s, vi) = P(s, vi)·Pi 

            if vi ≠ wi then 

P(s, wi) = [ P(s, wi) U [P(s, vi)·Pi] ] 

end SOLVE 

Figure 2: Single source all path algorithm 
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Sparq2l Labeling & Indexing 

 

SPARQ2L [5] uses a concise representation of paths (called P-Expressions) instead of an 

enumerated listing. For example given the triples (x, P, y), (x, Q, y) and (y, R, z), the 

summary of paths between x and z can be represented as (P U Q · R). The system uses a 

binary encoding scheme to efficiently represent such regular expressions as opposed to a 

string representation. 

[5] has a hierarchical labeling scheme based on 3 identifiers: 

Component Identifier: unique number assigned to individual strong component during a 

depth first search on the graph. 

Level Identifier: it is the depth of the strong component node in the optimal spanning tree. 

Subgraph Identifier: identifies disconnected non-tree subgraphs and the dangling tree 

subgraphs. 

Given a path query with source s and destination d, the labeling scheme has the non-

reachability property that can be stated as follows: 

• If s and d do not have the same subgraph identifier, then the query result is empty. 

• If the level identifier of source is greater than that of the destination, the query 

result is empty. 

• Any node with a level identifier lesser than that of s and greater than that of d 

cannot be a member of the result set. 
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The result of the SOLVE [9] algorithm for a source s is an array of path summaries. 

The array is indexed based on the node identifiers. For example, the array below 

summarizes the paths for a given source node. An entry of Ø indicates that there is no 

path between the source and that node. Otherwise, the P-Expression for the path is stored 

as part of the array element.  

Ø Q · R Ø Ø 

Figure 3: Path Summarization 
 

 

Lucene Search Index 

 

Lucene [19] search engine is a Jakarta open source project used to build and search 

indexes. It can index text documents and retrieve them based on various search criteria. It 

provides a basic framework which can be used to build a full-featured search engine. 

Lucene indexes using document objects. Thus, the text documents which are to be 

indexed have to be converted to document objects. Each document object consists of a set 

of field objects containing name and value pairs. The name is of type String and value 

can either be a String or a Reader object. Field class in Lucene provides various methods 

depending on whether the text in the value part of the field is tokenized, indexed or 

stored. Depending on the requirements some of the text information is tokenized, indexed 

or stored. A Lucene allows users to search on the values of these fields and this is done 

using an IndexSearcher object. All query terms are parsed using an analyzer, which is 

wrapped within the query object. Lucene provides four different analyzers to parse the 
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search terms in the query: the StopAnalyzer, WhiteSpaceAnalyzer, SimpleAnalyzer, and 

StandardAnalyzer. An analyzer takes in a stream of text and returns a set of tokens. 

Lucene tokenizes the queries depending on the kind of analyzer. The StopAnalyzer is 

used to split the terms and eliminate any stop words that exists in the query. The 

WhiteSpaceAnalyzer splits the query terms based on white space. The SimpleAnalyzer 

splits the text at non-character boundaries, such as special characters (‘@’,’&’ etc.). The 

StandardAnalyzer is the most sophisticated parser with rules for email addresses, 

acronyms, hostnames, floating point numbers, as well as the lowercasing and stop word 

removal. Lucene provides two important classes to build and search on a index. 

IndexWriter class is used to build the index and IndexSearcher class to search on the built 

index. Lucene provides tools to generate query objects called Query Parser. 

The QueryParser class takes the search terms or queries and wraps them in a 

query object. This query object is later used by the search method in the IndexSearcher 

class. Later, the IndexSearcher returns the Hits object for the query. This Hits object is 

similar to a vector and contains the ranked list of document objects for a given query. For 

our use, we have implemented a PorterStemAnalyzer by extending Lucene’s analyzer 

class and have used it to stem the words to its base forms to eliminate any stop words. 

 

WordNet 

The WordNet [20] is an online lexical reference system developed at the Cognitive 

Science Lab of Princeton University. Currently WordNet contains about 150000 words 

organized into 115,000 synsets of nouns, verbs, adjectives and adverbs. Each synset or 

set of words are related to other synsets by common relationships such as hypernym or 
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hyponym, and meronym or holonym, verb groups i.e. groups of related verb forms, 

synonyms or similar meaning words, derivational forms or morphological forms etc. 

There exist different groups of synonymous words that are grouped based on the sense of 

a particular word.   For example, the word faculty has two synsets since it has different 

senses based on the usage context. WordNet can retrieve the different sets of related word 

information depending on the POS (Part of Speech) of the word. For example, the word 

teaches has related word forms such as verb groups, synonyms, derivational forms, and 

hyponyms. The derivational form of a word is given by adding the morphological 

suffixes. For example, derivational form of a word write is writing. 
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Chapter 3 

SYSTEM ARCHITECTURE 

. 

The System has two execution phases: Pre-processing phase and the Query processing 

phase. During the pre-processing phase, the system builds indices that are later used 

while processing the keyword search query. Building indices offline predominantly helps 

in reducing the execution time of the query. Figure 5 shows the system architecture 

diagram. Before the user enters the query, the ontology is loaded and the system builds 

the necessary indices. We identify two kinds of indices that need to be built during the 

pre-processing phase: (1) Text search index for the ontological triples, (2) Labeling and 

indexing of graph’s path sequence. We use Sparq2l system to build the path sequence 

indices as described in section 2.2. As described earlier, the query to a keyword search 

consists of a list of n keywords and the answer to the query is the set of paths in G where 

the end point of each path is a node v∈V that matched a user keyword based on one of 

the following criteria: 

• There exists some keyword k ∈(k1, k2… kn) that matches label of node v either 

lexically or on semantic query expansion. 

• Node v is the subject/object of the ontological triple whose predicate label 

matches some keyword lexically or on semantic query expansion 

In order to achieve this, we first require an ontology text search index that can match user 

keywords to entity labels in the ontology. 
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3.1 TRIPLE SEARCH INDEX  

 

In order to facilitate fast matching of user search terms to ontological entities, we build a 

search index for triples in the ontology. Consider the triple: <Thomas Cormen, author, 

Introduction to Algorithms>.  The system creates an index for every triple in the dataset 

using its subject, predicate and object values in the least. Thus a search keyword author 

will retrieve the above triple based on its match of the predicate index. 

 

 

Figure 4: System Architecture 
 

However, more often the labels in the ontology require lexical and semantic processing 

before creating the index. For example, it is very common to label relationships using 

compound words. The relationship author is more commonly represented using 
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compound words author_of or has_author. In such cases, it is necessary to tokenize the 

label and remove commonly occurring stop words. 

Another common issue in information retrieval is vocabulary mismatch. For 

example, the user might have entered the keyword writer while the ontology has the term 

author. The main reason for such mismatches is the restricted vocabularies of knowledge 

bases. Traditional search engines do query expansion to overcome this problem. Query 

expansion is the technique of adding related terms to the original query to improve upon 

the problems of word mismatches. We use WordNet [20], a large lexical database of 

English, to expand the ontological term with its synonyms. Hence, while indexing author, 

its synonym writer is also indexed.  

As part of the term expansion procedure, the system also indexes all derivational 

forms of a word. We use the porter stemming algorithm [16] to determine the root stem 

word for then determine derivational words by adding noun/verb suffixes to it. Hence, the 

ontological label writer will also be indexed using its derivations write, writer and 

writings.  

Thus for every triple, we create an index using the following fields: 

• Subject label & URI 

• Predicate label & URI 

• Object label, URI or value (in case of literal) 

• Synonym 

• Derived Words 
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We use Apache’s Lucene to build the ontology triple index. As described earlier, the 

lucene index is made up of document objects and each document object consists of 

multiple design-specified fields. A field represents the value against which the index is 

queried. An example of fields for a document could be author, language, topic, data 

modified etc. A search of type author:Thomas Cormen will retrieve all documents 

authored by Thomas Cormen. In the case of ontology triples, each triple constitutes a 

document object and we define the following fields: subject label, predicate label, object 

label, subject URI, predicate URI, object URI/value (literal), synonyms & derived words. 

The search index is extensible in that if the triple needs to identified by additional 

properties (say class names), adding the new property as a document field would suffice 

the requirement without needing further changes to existing document structure.  

Lucene provides four types of field objects that determine how the field values are 

indexed and stored. They are: 

• Field.Keyword - The data is stored and indexed but not tokenized. This is most 

useful for data that should be stored unchanged such as a date.  

• Field.Text - The data is stored, indexed, and tokenized. Field.Text fields should 

not be used for large amounts of data such as the article itself because the index 

will get very large since it will contain a full copy of the article plus the tokenized 

version. For the triple index, this field can be used to index the subject, predicate 

and object labels. 

• Field.UnStored - The data is not stored but it is indexed and tokenized. Large 

amounts of data such as the text of the article should be placed in the index 
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unstored. Fields involving synonyms and derivational words of the ontological 

entities need not be stored as they do not need to be retrieved. 

• Field.UnIndexed - The data is stored but not indexed or tokenized. This is used 

with data that you want returned with the results of a search but you won't 

actually be searching on this data. In our application, since we do not allow 

searching for the URI, there is no reason to index it but we want it returned to us 

when a search result is found.  

 If the user’s keyword matches any of these keys, the corresponding triple is retrieved. 

The use of synonyms and derived words as search indices provides for semantic query 

expansion during the online query processing phase. 

 

3.2 QUERY PROCESSING 

 

As described earlier in the problem definition, the answer to the path query is a set of 

paths between nodes in the graph where the end points matched the user’s keywords. 

Query processing consists of taking all the matched nodes as input and computing paths 

that connect them. [9] describes a method to solve the single source path expression 

problem, i.e. given a source node s, compute all paths between s and nodes in the graph. 

In our case, we have multiple matched nodes, each of which could potentially be the 

source of a path. We describe our MULTISOLVE algorithm later in the section. 

Consider the keyword search query Amit Sheth Writings Semantic web. We use 

the two criteria mentioned in the problem definition to determine the nodes to include in 

the resultant path set. The first criterion includes all nodes (instances) whose labels 
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directly matched the keyword either lexically or through semantic query expansion. In 

the example above, this would match entities Amit Sheth and Semantic Web and retrieve 

the triples that contain the matched entities as subjects or objects. In the case that a 

relationship label (AuthorOf) matches a keyword (Writings), we include all nodes that are 

associated with the relation. In order to filter out irrelevant nodes, we only consider 

already matched entities that have the matched property/relation. Hence, we would only 

include nodes that are objects of the triple (Amit Sheth, AuthorOf, ?o). Here, we say that 

the keyword has matched an ontology entity through semantic query expansion. While 

creating the index, the system handles the relationship label AuthorOf in the following 

manner. The final list of words used for indexing the relation AuthorOf contains the word 

Writings. 

• Tokenize label and remove stop words {Author} 

• Find synonyms of the word using WordNet {Author, Writer} 

• Using porter stemming algorithm, determine the stem of each of the words in the 

list {Author, Write} 

• Find derivatives from the stemmed word by adding noun/verb suffixes {Author, 

Writer, Writing, Writes, Writings} 

The system determines subject/object matches first and only then handles matches at the 

predicate level. The main reason to do this is to easily filter out unwanted nodes before 

computing the paths. 

 At the end of the matching procedure using Lucene search index, we would have 

a list of nodes that are to be included in the resultant set of paths. The next step is to 
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determine the nodes that form the end points of the paths. In order to be able to use the 

underlying SPARQ2L system for path computation, the labels, as represented in sparq2l, 

of the matched nodes have to be determined. The multisolve algorithm iterates through 

this set and computes all the paths involving them. Applying the non-reachability 

property of the sparq2l labeling scheme, we can determine the order in which the set has 

to be iterated. We propose that sorting the nodes in increasing order of their IDs will 

result in the complete set of all paths between the matched nodes. As discussed in section 

2, each node ID in sparq2l consists of 3 identifiers: strong component, subgraph & level 

identifier. The comparator between two nodes with IDs {scc1, sub1, lev1} and {scc2, 

sub2, lev2} is as follows: 

• If scc1 is not equal to scc2 then the node with smaller scc ID is smaller. Else goto 

next step. 

• If sub1 is not equal to sub2 then the node with smaller sub ID is smaller. Else goto 

next step. 

• Node with smaller level ID is smaller. 

Figure 6 presents the multi source path expression algorithm. We discuss the experiment 

and evaluation in the next section. 
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procedure MULTISOLVE 

begin 

Initialize:  

   M: Set of nodes matched using lucene search index 

   S: Set of nodes already solved in the algorithm 

   For each node s∈M DO 

P(s, s) = Λ; 

for each v∈V – {s}, P(s,v) = Ø 

    End For 

Loop: 

    Do until all nodes in M are marked 

Mark smallest node s ∈{M}–{S} and add to S 

SOLVE(s) 

For each node a ∈{M}–{S}, Do 

    if a ∈path(s)  

Mark a and add a to S 

Add path(s) to result 

End Do 

end MULTISOLVE 

Figure 5: Multi Source Path Expression Algorithm 
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Chapter 4 

EVALUATION 

 

4.1 EXPERIMENT SETUP 

 

Implementation We have implemented our algorithm using Java 1.5 on a dual 1.8GHz 

AMD Opteron machine with 15GB RAM and running Linux 2.4. The version of Sparq2l 

used for path computation uses: Berkeley DB Java edition for storage and indexing; Colt 

library [18] to perform all matrix implementations. We used Brahms and SemDis API to 

parse the ontology and create a graph model which we used in creating triple indices and 

building indices for path expressions. To build the triple index, we use Apache Lucene 

[19] which is a high performance search engine library written in Java. To perform 

semantic term expansion, we use WordNet [20] which is a publicly available lexical 

database in English. The system is made web-based using the Apache Tomcat Java 

servlet container. 

 

Datasets We used two datasets in our performance evaluation. The Insider Threat [21] 

dataset was developed at the LSDIS lab as part of the Insider Threat initiative at 

Advanced Research Development Activity (ARDA). The second is a real-world dataset 

that is populated using information on US political news. Tables 1 & 2 below show the 

properties of the datasets. 
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Table 1 'Insider Threat' dataset general statistics 

INSTANCE LEVEL 

 
Instances:                26442 
Literals :                  66047 
Instance statements [instance - property - instance] :               34534 
Literal statements  [instance - property - literal] :                151313 
 
SCHEMA LEVEL 

 
Schema classes :            57 
Schema class literals :     105 
Schema properties :         75 
Schema property literals :  45 
Schema class statements [class - property - class] :                 1 
Schema class literal statements [class - property - literal] :       105 

 

 

Table 2 'US Politics' dataset general statistics 

General dataset statistics. 
 
INSTANCE LEVEL 

 
Instances:                  471 
Literals :                  950 
Instance statements [instance - property - instance] :               797 
Literal statements  [instance - property - literal] :                2345 
 
SCHEMA LEVEL 

 
Schema classes :            31 
Schema class literals :     55 
 
Schema properties :         32 
Schema property literals :  21 
Schema class statements [class - property - class] :                 1 
Schema class literal statements [class - property - literal] :       55 
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Table 3 Query Execution Times for Insider Threat dataset 

Query String 
Time 

(seconds) Num. Paths Max. Path Length Num. Nodes 

Council Infiltration , Middle East 6.57 3 3 2 

abdul paktin, 2001 hijacking 6.58 2 3 2 

oil training, middle east 6.58 3 2 2 

REVU , robert fisher 9.44 2 2 2 

janet wallace , unisys 9.48 1 1 3 

james lawson ,stryker 9.54 1 1 3 

Leader of , Philippines 10.42 2 2 3 

norman phillips , lyondell 12.07 3 2 3 

robert fisher, gap 14.66 3 3 4 

al islamia , afghanistan 15.54 13 4 5 

abdul paktin ,saddam hussein 17.17 3 4 8 
International fund ,connected 
with ,saddam hussein 19.93 5 3 9 

deborah pryce, ohio 21.53 1 1 8 

barakaat , bank of england 62.45 39 4 23 

 

Table 4 Query Execution Times for US Politics dataset 

Query String 
Time 

(Seconds) Num. Paths Max. Path Length 
Num. 
Nodes 

Arnold, registers, lawsuit 1.25 1 1 2 

Mark Sanford, South Carolina 1.26 1 1 2 

craig thomas, florida 1.27 5 7 3 

obama, 2000 election 1.28 4 6 3 

craig thomas, republican party 1.28 10 7 3 

craig thomas, laura bush 1.29 5 6 3 

christopher bond, patriot act 1.29 7 6 4 

arnold, jeb bush 1.29 8 8 2 

craig thomas, governors association 1.33 5 7 3 

john mccain , oxley act 1.33 2 2 3 

Larry Craig, veto, Governor Quinn 1.37 2 2 3 

signed, patriot act 1.65 2 3 3 

craig thomas, 2004 republican convention 1.67 8 7 3 

obama , joseph biden 1.74 2 1 4 

james talent, republican convention 2.61 17 7 7 

 

We evaluate the performance of the multisolve algorithm by running path queries and 

measuring the query running time. For this experiment we randomly selected 20 different 

keyword queries for each dataset such that there exists at least one path between nodes in 

the query. Hence, we do not evaluate queries that do not result in any paths. Tables 3 & 4 
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show the result of our experiments on the Insider Threat and the US Politics datasets 

respectively. 

 The query execution time is in the order of seconds for the datasets chosen. We 

analyze the complexity of the algorithms involved and try to determine the factors 

affecting the running time of the query processing phase. The query processing phase 

consists of the following steps: 

• Text search over the ontology to determine the nodes involved 

• Sort the matched nodes in the order of increasing node IDs 

• Compute paths that include the matched nodes 

We build the search index for ontology using the Lucene search engine. It offers almost 

constant time lookup of documents in the order of milliseconds. We obtain average 

lookup times of 96ms for the US Politics dataset and 145ms for the Insider threat dataset. 

The runtime for the second step of sorting the matched nodes depends on the number of 

matched nodes. In our experiments, the most number of nodes that were to be sorted did 

not exceed 23. Hence, the algorithm chosen is not crucial for this step. We used the 

TreeSet data structure to sort the nodes based on their node IDs. The TreeSet comparator 

guarantees that the nodes are sorted at the time of insertion itself with a time complexity 

that is logarithmic on the number of nodes in the set. 

 Hence, we can deduce that the most time is spent in step 3 of the query processing 

phase. The multisolve algorithm iterates through the sequence of matched nodes and 

computes path expressions that include all of these nodes. 
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Figure 6 Insider Threat Dataset: Query Processing Time versus Number of Solved Nodes 
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Figure 7 US Politics Dataset: Query Processing Times versus Number of Solved Nodes 
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 The worst case scenario, in terms of runtime of the multisolve algorithm, is when 

all the matched nodes have to be solved using the Tarjan’s single source path expression 

algorithm [9]. Suppose that the number of matched nodes is n and the number of path 

sequences in the graph (computed offline) is m, then the multisolve algorithm would scan 

the path sequence n times. Thus, the time complexity would be in the order of O(n.m). 

The value of m is dependent on the number of strongly connected components in the 

graph. 

 For a single source, the algorithm iterates through the entire path sequence and 

appropriately combines path expressions. Since we compute partial path expressions 

offline during the pre-processing phase, runtime is only affected by the method to 

combine partial path expressions. The underlying implementation in Sparq2l performs 

this operation in near constant time. This also implies that length of the path and number 

of paths does not affect the overall algorithm. Hence, the main factor that affects the 

runtime is the number of nodes that are considered as source nodes for computing path 

expressions. Figures 7 & 8 show the graph of query processing times against the number 

of matched nodes. It can be noted that the execution time increases with the number of 

nodes involved. However, in Figure 6 we note an anomaly. The runtime with 8 nodes is 

higher than with 9 nodes. For both of the queries, the number of path sequences read was 

the same. As mentioned earlier, SPARQ2L uses BerkeleyDB persistent storage to store 

the path sequences for a given graph. It is our educated guess that path sequences get 

cached during accesses to the database. Hence, the I/O access times could be smaller for 

a query with more number of nodes. This guess is to be validated and hence an issue to 

investigate in future work. 
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 The length of the path sequence for a graph is directly proportional to the number 

of nodes in the graph. The query processing time directly depends on the length of the 

path sequence as the algorithm iterates through the entire path sequence for each source 

node. Figure 9 below shows the comparison between the query execution times of the 

two datasets used. The Insider Threat dataset has more number of nodes than the US 

Politics dataset and hence it takes longer to process queries, with same number of source 

nodes, over Insider Threat dataset. 

 

Query Processing on Different Datasets
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Figure 8 Comparing Query Execution Times over Different Datasets 
 

Table 5 Query Execution Time over Different Dataset 

Num. Nodes 

US Politics - 
Query Execution 

Time (T1 
seconds) 

Insider Threat - 
Query Execution 

Time (T2 
seconds) Scale = T2 / T1 

2 1.29 9.44 7.317829457 

3 1.67 12.07 7.22754491 

4 1.74 14.66 8.425287356 
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Table 5 shows the scaling of query execution times over the two datasets. The size of 

path sequence of the Insider Threat dataset is 26411 and that of US Politics dataset is 470 

giving a size scaling of 56.2. 

 

4.2 ALGORITHM CORRECTNESS 

 

In section 2, we briefly described Tarjan’s algorithm [9] to solve the single source path 

expression problem that given a source node and a path sequence will compute all paths 

between the source and any node v in the graph. [9] presents the algorithm and also 

discusses the proof of its correctness. [9]  makes use of the single-scan-path-preserving 

property of path sequences and thus computes the path expression in a single scan of all 

the partial path expressions. In our scenario, we have multiple sources and the problem is 

to determine paths that include all these source nodes. Our main adaptation to [9] is in 

determining the order in which the source nodes are selected to compute the paths. We 

propose that selecting the nodes in the increasing order of their node IDs, determined 

based on the hierarchical labeling scheme; will ensure that no paths are missed. 

 The non-reachability property of the Sparq2l labeling scheme states that given 

two nodes s and d, there cannot be a path from s to d if any of the following is true: 

• If s and d are not in the same subgraph 

• If the level identifier of s is greater than that of d. 

Thus, given a set S = {s1, s2 … sn} of nodes, ordering them incrementally based on their 

node IDs would ensure that for any i and j such that nodeID(si) is less than nodeID(sj), 
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the paths (if one exists) between si and sj would be taken into consideration while 

computing the path expression. The single scan algorithm will solve si and correctly 

aggregate all the paths between si and nodes that appear later in the scan. Conversely, if 

node si is solved later than sj, then the paths between si and sj will not be considered in the 

result. 
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Chapter 6 

CONCLUSION & FUTURE WORK 

This thesis presents a prototype system that allows keyword search for path queries on 

ontology. The contributions of this work are as follows: 

• We present a full-text search index for ontology triples that provides matching 

capabilities based on semantic and morphological expansion of terms used for 

indexing the triple. 

• Given a set of text matches, we propose a method to construct the set of answer 

paths using the algorithm to solve the multi-source path expression problem. 

The paths retrieved by the system are not ordered. Hence, it could potentially lead to 

information overload. Semantic association ranking metrics such as those suggested in 

[22, 23] could be used to present only paths most relevant to user’s context.  

DBpedia, Yago are recent efforts to generate semantic metadata by extracting 

structured information form the web (Wikipedia). A keyword or natural language search 

interface to such knowledge bases would prove immensely useful as the end user need 

not be aware of the structure of the information. While this work is limited to handling 

keywords, it will be worthwhile to build a search interface that accepts queries in natural 

language.
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Appendix A 

SCREENSHOTS OF THE SEARCH INTERFACE 

 

 

Figure 9 Query: "Council Infiltration, Middle East" 
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Figure 10 Query: "Leader of, Philippines" 
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Figure 11 Query: "International fund, connected with, saddam hussein" 
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Figure 12 Query: "Mark Sanford, South Carolina" 
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Figure 13 Query: "Larry Craig, veto, Governor Quinn" 
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Figure 14 Query: "Arnold, registers, lawsuit" 


