ES3N: A Semantic Approach to Data Management in Sensor Networks

Micah Lewis, Delroy Cameron, Shaohua Xie, I. Budak Arpinar

Computer Science Department
University of Georgia
Athens, GA 30602

Outline

- Background
- Problem
- ES3N Implementation
- Semantic Benefits
- Future Work
- Demo
Background

- Cargill Industries Inc.
 - Corporate Headquarters in Minneapolis, MN
 - Origin as family-owned food business
 - Started in 1865
 - 149,000 employees
 - Spans 63 countries

Cargill

- International provider of food services
- Commercial cereal grain and oil seed storage
- Food Processing (soybean and corn)
- Provide quality product to consumers
Background…

- USDA ARS NPRL
 - USDA created 1862
 - ARS created 1953
 - NPRL established 1965

NPRL

- Subsidiary research unit of the ARS
- Unshelled and shelled peanut research
- Quality for pre and post harvest
- Control aflatoxin
Problem

- Cargill
 - Primitive data acquisition
 - No data storage mechanism
 - No possibility for data analysis or mining

Problem...

- NPRL
 - Data management
 - Laborious human analysis
 - Query functionality nonexistent
ES3N Implementation

- Three targeted areas:
 - Data acquisition
 - Data Storage
 - Data Management

ES3N Implementation

- Four main components:
 - Sensor Network
 - Data Analysis and Query Processing Unit
 - Ontology
 - GUI (Graphical User Interface)
Development

- Data collection
- Memory caching
- Data Tagging
- Ontology representation
- Query processing
Data Collection

- Raw data retrieved from sensors
- Ontology provides persistent storage
- Data reside in ontology in RDF files

Memory Caching

- Preserve efficiency of system
- Effectively manage memory
- Main memory cleared daily
- Daily RDF files generated
Data Tagging

- Heterogeneous data usually problematic
- Two sensor types:
 - Temperature: thermocouples
 - Relative humidity: RH sensors
- Data are time stamped (has_date & has_time)

Ontology Representation

- Function 1: Constraints & Initialization
 - Grain/seed specific constraints
 - Indication of contents within mini-dome
 - Utilization of OWL
Function 2: Record Storage
- Predefined ontology schema
- Each record consists of 21 attributes
- `has_date` & `has_time` provide uniqueness
- Utilization of RDF/RDFS

Ontology Representation…
Query Processing

- Collaboration of SPARQL and Jena
- Support for three types of queries:
 - Exploratory
 - Monitoring
 - Range

Query Processing

- Needed files determined for query
- Files returned to main memory
- Files released upon completion of query
Semantic Benefits

- Providing meaning to meaningless data
- Exploit literal statements
- Query Richness

Future Work

- Addition of BRAHMS
 - Large RDF storage system
 - Supports fast semantic association discovery
 - Aid in data analysis
Conclusion

- Grain storage issues with Cargill & NPRL
- ES3N:
 - Data Acquisition
 - Data Storage
 - Data Management
 - Semantic Relief